
Audit Report

contact@movebit.xyz https://twitter.com/movebit_

Pontem Liquidity Swap Formal
Verification

Sat Apr 20 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

1/18

Pontem Liquidity Swap Formal Verification
Audit Report

1 Executive Summary

1.1 Project Information

Description An Concentrate liquidity Based AMM Swap.

Type DeFi

Auditors MoveBit

Timeline Sun Feb 25 2024 - Sat Apr 20 2024

Languages Move

Platform Aptos

Methods Architecture Review, Formal Verification

Source Code https://github.com/pontem-network/liquidswap_v1

Commits de53c626e94fe185f60debd404c1f1b33b827581

https://github.com/pontem-network/liquidswap_v1
https://github.com/pontem-network/liquidswap_v1/tree/de53c626e94fe185f60debd404c1f1b33b827581

2/18

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

EME sources/emergency.move 420f6f7eda92bf92dead58de263b5
f73a8abbe81

LTO sources/lb_token.move 0d0296f6659a74f18e6ad5a8a47e8
8ec9311ccaa

CON sources/config.move 885b838ef8bee78d7df9360623ee4
f89bf98f1f0

POO sources/pool.move 4c6deebf98e4edd827acb4c72dac
3a5fba38ea57

ORA sources/oracle.move f52ec8c11cc404a19173acbab108f
ecd0a6b923e

TRE sources/treasury.move 86054e2bf173ea1176f1598cdfbb1
ba6ffff9bae

3/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 1 1

Informational 0 0 0

Minor 1 0 1

Medium 0 0 0

Major 1 1 0

Critical 0 0 0

4/18

1.4 MoveBit Audit Breakdown

MoveBit aims to confirm the soundness of the formal verification by concept review,
property discovery, gathering, verification, and compliance with the auditing techniques.
Possible specifications included (but are not limited to):

Assertions

Aborts conditions

Return value confirmation

Invariant

High-level properties

Best practice

5/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Specification" strategy to perform a complete formal verification to ensure the
completeness of the entire process. The main entrance and scope of verification are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The specification of the scope can be mainly
separated into these categories:

(1) Local Property:

Including the possible aborts conditions, requirements, and expected global state change.

(2) High-level Property:

Including the feature that is highly relevant to the project. The detail of the properties can be
found in section 3.

(3) Helper Function:

Including the function that is used to obtain the value during the specification, like ghost
variable and opaque function.
The necessary information during the audit process will be well documented for both the
audit team and the code owner in a timely manner.

6/18

2 Summary

This report has been commissioned by Pontem to identify any potential issues and
vulnerabilities in the source code of the Liquidity Swap V1 smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

POO-1 Unexpected Coin Value (Property 2
Not Hold)

Major Fixed

POO-2 Unexpected Pool Status (Property
6 Not Hold)

Minor Acknowledged

7/18

3 Specification Process

Here are the relevant actors with their respective abilities within the Liquidity Swap V1 Smart
Contract :
This section listed all the modules/functions we verified and demonstrated the details.
Overall, we catalog the specification into the local properties and high-level properties .

Local Properties

Module Function Status Comment

lb_token.move create_token_collection Verified

The other functions in the
lb_token are almost

helper functions, and we
use opaque to leverage

these functions.

Oracle.move create_oracle Verified -

Oracle.move increase_oracle_length Verified -

Oracle.move update_oracle Verified

It does contain bv to int
calculation, and it may

lead to prover error when
called by ' swap_inner '.

Solved with a helper spec.

Oracle.move get_oracle_lengths Verified -

8/18

Module Function Status Comment

Oracle.move get_oracle_active_id Verified -

Oracle.move get_sample_data_unsafe Verified -

Oracle.move get_sample_data Verified -

Oracle.move get_sample_timestamp_and_lifetime Verified -

Oracle.move get_sample_cummulative_data Verified -

Oracle.move check_sample_has_filled Verified -

Oracle.move sample_exists Verified -

Oracle.move get_max_oracle_length Verified -

Oracle.move binary_search
Partially
Verified

-

Pool.move initialize Verified -

9/18

Module Function Status Comment

Pool.move register_pool
Not

Verified

It occurs an unknown
prover error 'task

panicked'. Solved with
opaque.

Pool.move update_static_fee_parameters Verified -

Pool.move update_fees_configuration Verified -

Pool.move swap_inner Verified

It occurs bv to uint
conversion, which the

move prover has not fully
supported yet. Solved with

a helper function.

Pool.move flashloan Verified Partially

Pool.move pay_flashloan Verified Partially

Pool.move mint
Partially
Verified

It occurs an unknown
prover error 'task

panicked' in mint_bins,
mint function. Solved with

opaque.

10/18

Module Function Status Comment

Pool.move update_bin Verified -

Pool.move burn
Partially
Verified

It occurs an unknown
prover error 'task

panicked'. Solved with
opaque.

Pool.move unwrap_liq_nft Verified -

Pool.move burn_bin_liquidity Verified -

Pool.move is_coin_sorted_inner Verified -

Treasury.move register Verified -

Treasury.move deposit Verified -

Treasury.move withdraw Verified -

Treasury.move get_balance Verified -

11/18

Module Function Status Comment

Treasury.move exists_at Verified -

High-level Properties

No. Property Criticality Implementation Enforcement Status

1
The NFT produced by

the lp_token should be
unique.

Critical
It should be verified in

the Aptos
framework::token

Enforced by
aptos_token

module
Verified

2
The pool must contain
both of the two tokens

during the swap.
Major

The coin_x and
coin_y should both be
zero or both be non-

zero.

Formally
Specified:

Struct pool

Manual
Checked

3

Each swap should only
take one kind of coin
at a time to another

coin.

Major

The swap_inner
function should never
have x and y to be

both non-zero.

Formally
Specified:

swap_inner
Verified

4 When a swap trade
exceeds a tick, the

liquidity remaining in
this tick should

Critical The reserves_x or
reserves_y of the

current bin_step should
be zero when

active_bin_id changed.

Formally
Specified:

swap_inner

Verified

12/18

No. Property Criticality Implementation Enforcement Status

contain only one kind
of coin.

5

When any LP
deposits/withdrawn
token to a pool, the
reserved coin in the

target bin should
increase/decrease.

Major

It should be verified by:
(1) Each step in the
update_bin should

correctly update the
value of the bin and

return the correct coin
value/type. (2) After

mint\burn, the value of
pool.coin_x or

pool.coin_y should
increase\decrease.

Formally
Specified:

mint ,
mint_bin ,

burn ,
update_bin

Manual
Checked

6
All coins should be

processed within the
pre-setting position.

Major

It should be verified by:
(1) The swap should be

started at the
active_bin_id . (2) The

mint should be
deposited in the bin

vector.

Formally
Specified:

swap_inner ,
mint , burn

Verified

7

When any LP
deposits/withdrawn
coins to a pool, while
the bin is higher or

lower than the active
bin, it shall only need
to provide one kind of

coin.

Major

It should be verified by:
The added_x and

added_y in the mint
function are zero when
dealing with the bin !=

active_bin_id .

Formally
Specified:

mint ,
mint_bin

Verified

13/18

No. Property Criticality Implementation Enforcement Status

8
The treasury received
the correct amount of

fee.
Major

The treasury received
the fee that is equal to

the setting value.

Formally
Specified:
deposit

Verified

9

The flash loan must be
paid back with the full
amount, meanwhile,
the pool cannot be

modified.

Critical

It should be verified by:
(1) When the pool is

locked, it should not be
able to lend flashloan.

(2) The flashloan struct
should have no abilities.
(3) There should be only
one flashloan during the
lending process. (4) The
amount when lent/paid

should be correct.

Formally
Specified:
Flashloan ,

Pay_Flashlon

Verified

10

After a swap trade, the
k of the pool should be

rising due to the
trading fee.

Major

When the trading fee is
not zero, the treasury

should grow after
trading.

Formally
Specified:

swap_inner
Verified

11
When a pool is locked,

there should be no
operation happened.

Major
The swap should abort
when the pool is locked.

Formally
Specified:

swap_inner
Verified

14/18

4 Findings

POO-1 Unexpected Coin Value (Property 2 Not Hold)

Severity: Major

Status: Fixed

Code Location:

sources/pool.move#108-139

Descriptions:

The property 2 requires:

The coin_x and coin_y of a pool should both be zero (at its initial state) or both be non-

zero.

The coin_x and coin_y after any operation should not be zero for a non-empty pool.

However, a series of functions has violated this property. We denoted the pre_x and pre_y

as the value of coin_x and coin_y before the execution, and post_x and post_y as the value

after the execution. When pre_x != 0 && pre_y !=0 , they allowed the value after the

execution to be zero, which is post_x == 0 || post_y == 0 . These functions include:

swap_inner, mint, burn, flashloan, pay_flashloan

We believe a swap pool should not allow the situation, as the concentrated liquidity should

follow the k = x*y when considering the sum of bin_steps. Otherwise, it may lead to

unexpected errors.

However, for flashloan and pay_flashloan , it may not be necessary to ensure this

property.

Suggestion:

It is recommended to implement assertions to the functions swap_inner, mint, burn as

follows:

assert!(coin::value(pool.coin_x) == 0 || coin::value(pool.coin_y) == 0,

ERROR_SHOULD_NOT_EMPTY);

Resolution:

15/18

The development team has confirmed and made certain modifications to ensure this

situation will not happen.

16/18

POO-2 Unexpected Pool Status (Property 6 Not Hold)

Severity: Minor

Status: Acknowledged

Code Location:

sources/pool.move#1031-1098

Descriptions:

The property 6 requires:

Each step in the update_bin should correctly update the value of the bin and return the

correct coin value/type.

After minting, the pool.coin_x or pool.coin_y should rise.

During the specification, we found the state of the pool.coin_x and pool.coin_y had been

reassigned after the loop in the mint_bin function, and this reassign of the pool led to the

violation of this property. These functions include:

mint_bin, update_bin

The reassigned pool shows the situation that, none of the coin_x and coin_y are

increase after the mint.

Suggestion:

Make sure during the execution of the mint_bin , mint , and update_bin functions, the

state of pool.coin_x and pool.coin_y will not be changed unexpectedly.

As a reminder, it can be a move-prover error and may not indicate any deflect in the source

code.

Resolution:

The development team has confirmed that the state of pool.coin_x and pool.coin_y is not

modified during the loop inside functions mint_bin and update_bin .

17/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

18/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	299_page1.pdf
	299_page2.pdf

