
Merkle Trade

Smart Contract

Audit Report

07/21/2023

1

Merkle Trade Smart Contract Audit Report

The following are the SHA1 hashes of the original reviewed files.

1 Executive Summary

1.1 Project Information

1.2 Files in Scope

Description Merkle Trade is a decentralized trading platform

Type Derivatives

Auditors MoveBit

Timeline June 26, 2023 - July 19, 2023

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/tauruslabs/merkle-contract

Commits e0e4cb0f0c606f319f52f729b26fc7a38e6e0d48

57cdac1a7e923b6b91b43301fc8f83690cb5864f

ID Files SHA-1 Hash

MCT merkle-contract/Move.toml ea762e2a02fa2145435226ed7d

7997538a1849cf

TDC merkle-

contract/sources/trading_calc.move

3f862b1092482a8c398a182142f

df9ba3ef8e609

MoveBit

2

MGT merkle-

contract/sources/managed_trading.

move

5339ae12a8e09ae20212a88380

f6ff6f48de567c

FDB merkle-

contract/sources/fee_distributor.mov

e

9b6f5785eff39c3df013dc964c3

1b87a2dcb1178

MFD merkle-

contract/sources/managed_fee_distr

ibutor.move

9c5b91b2d0290e2fca27a06859

748b087008093b

MHL merkle-

contract/sources/managed_house_lp

.move

9fc05ae034136f996c7dd9e39a

528313a5f1e2e1

PRO merkle-

contract/sources/price_oracle.move

9107d415439ec49d1399933c90

29981a70df2574

HSL merkle-

contract/sources/house_lp.move

eda18122ef47ca3f2049f844b9f

28a8748d6cd0b

SBS merkle-

contract/sources/common/switchbo

ard_scripts.move

0439668c4c1c49b403c10f3ec4

da531a2055a9e0

PYS merkle-

contract/sources/common/pyth_scri

pts.move

8a9a914e8546786ff5990fb4e34

3ccb859c5eeb4

SMU merkle-

contract/sources/common/safe_mat

h_u64.move

1f3ffc9a667fc922d8fa24a51b94

f4edb9814975

TRD merkle-

contract/sources/trading.move

a4931253e8c40bc3ae477344b6

d8d95554410698

VAT merkle-contract/sources/vault.move f4e425c19383895154aad25f40

9ff7e8c2951dc9

MoveBit

3

MoveBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are not

limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

1.3 Issue Statistic

1.4 MoveBit Audit BreakDown

●

●

●

●

●

MNV merkle-

contract/sources/managed_vault.mo

ve

249039306a879c01a74a9af47b

25815f8890c777

VLT merkle-

contract/sources/vault_type.move

93bb25fd8882abfd0d805e5927

75ecf3d8a4c9f6

MPO merkle-

contract/sources/managed_price_or

acle.move

584de8e225b9cd967c25cd9b5

2f50eb184b42424

Item Count Fixed Acknowledged

Total 8 7 1

Informational 2 1 1

Minor 4 4

Medium 2 2

Major

Critical

MoveBit

4

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way

that is closest to the real attack. The main entrance and scope of security testing are

stated in the conventions in the "Audit Objective", which can expand to contexts beyond

the scope according to the actual testing needs. The main types of this security audit

include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner in

time. The code owners should actively cooperate (this might include providing the latest

stable source code, relevant deployment scripts or methods, transaction signature scripts,

exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both the

●

●

●

●

●

●

●

●

●

1.5 Methodology

●

●

●

MoveBit

5

audit team and the code owner in a timely manner.

This report has been commissioned by Merkle Trade to identify any potential issues and

vulnerabilities in the source code of the Merkle Trade smart contract, as well as any contract

dependencies that were not part of an officially recognized library.

In this audit, we have utilized various techniques, including manual code review and static

analysis, to identify potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

2 Summary

ID Title Severity Status

TRD-1 Limit Orders Cannot Be

Executed

Medium Fixed

TRD-2 tp_percent Should Be

Less Than or Equal to pair
_info.maximum_profit

Minor Fixed

SBS-1 Missing Check for Negative

in get_switchboard_pric
e() Function

Medium Fixed

HSL-1 Zero Fee Deposit for Small

Amounts

Minor Fixed

HSL-2 Error Code E_COIN_NOW_IN
ITIALIZED is A Bad

Naming

Informational Fixed

HSL-3 Check Sufficient lp Collectral Minor Fixed

MGT-1 The Admin Lacks the

Permission for the Burn

ExecuteCapability Capability

Minor Fixed

MGT-2 Centralization Risk Informational Acknowledged

MoveBit

6

Here  are  the  relevant  actors   with  their  respective   abilities within the  Merkle Trade Smart  Contract 
：

Admin:

The admin has the authority to withdraw accumulated fees from the stake vault and the dev

vault, as well as the ability to set the weights for stake, LP, and dev in the fee distribution

through managed_fee_distributor.move .

The admin has the authority to register users, deposit and withdraw funds for a specific

collateral type in the house_lp module, as well as set deposit fees, withdrawal fees,

withdrawal divisions, and minimum deposit amounts for house_lp through managed_house_
lp.move .

The admin has the authority to register oracles, manage allowed update addresses, perform

updates, and configure various parameters in the price_oracle module for specific pair types

through managed_price_oracle.move .

The admin has the authority to initialize the module, set address executor candidates, claim

and burn execute capabilities, place orders, cancel orders, execute orders and exit positions,

pause and restart trading, and configure various parameters in the managed_trading module

for specific pair and collateral types through managed_trading.move .

The admin has the authority to register a vault for a specific VaultT and AssetT in the manag
ed_vault.move .

User:

Users can pledge assets to obtain MKLP tokens.

Users can destroy MKLP tokens, retrieve pledged assets, and claim rewards.

Users can create and cancel market/limit orders.

Users can execute market decrease orders.

Executor:

Executor can execute orders.

Executor can burn ExecuteCapability.

Executor can execute the take-profit, stop-loss, or liquidate function.

3 Participant Process

●

●

●

●

●

●

●

●

●

●

●

●

MoveBit

7

Severity: Medium

Status: Fixed

Code Location: merkle-contract/sources/trading.move#L861

Descriptions:

The function execute_order() is used to execute an order. Inside the function, It

checks if more than 30 seconds have passed since the order was created. If the condition

is met, it cancels the order by calling cancel_order_internal() . However, if the order is

a limit order, it means that the order has a specific price set by the trader at which they are

willing to buy or sell the asset, if this timeout has elapsed, the order is considered expired.

Suggestion: Suggest checking whether the order is a market order or a limit order.

Resolution: Added a code check to ensure that only market orders can be canceled.

Severity: Medium

Status: Fixed

Code Location: merkle-contract/sources/common/switchboard_scripts.move#L6-L17

Descriptions:

4 Findings

TRD-1 Limit Orders Cannot Be Executed

SBS-1 Missing Check for Negative in

get_switchboard_price() Function

let now = timestamp::now_seconds();
 if (now - order.created_timestamp > 30) {
 cancel_order_internal<PairType, CollateralType>(
 _order_id,
 order,
 T_CANCEL_ORDER_EXPIRED
);
 return
 };

1
2
3
4
5
6
7
8
9

MoveBit

8

The function get_switchboard_price() is used to retrieve the price and round confirmed

timestamp from Switchboard.

However, it does not follow the best practices as recommended by the official guidelines.

https://docs.switchboard.xyz/guides/feeds/best-practices#integration-checklist

According to the recommendations, it is advised to include a check to ensure the negative is

not true. If the negative value is true, it implies that there might be some problem with the price

received from Oracle, potentially because the price is expired or has some error.

However, this check is missing in the provided code, which can lead to potential issues.

Suggestion: It is recommended to add a check assert!(negative == false, ERR_NEGATIV
E_SWITCHBOARD_PRICE); to ensure that the obtained price from the Switchboard is not

negative.

Resolution: Checked switchboard neg flag.

Severity: Minor

Status: Fixed

Code Location: merkle-contract/sources/house_lp.move#L179

Descriptions:

HSL-1 Zero Fee Deposit for Small Amounts

 public fun get_switchboard_price(
 aggregator: &Aggregator,
): (u128, u8, u64) {
 let (price, updated_time) = aggregator::latest_value(aggregator);
 let (price_value, price_decimals, negative) = switchboard_math::unpack
(price);
 assert!(negative == false, ERR_NEGATIVE_SWITCHBOARD_PRICE);

 (price_value, price_decimals, updated_time)
 }
}

1
2
3
4
5

6
7
8
9
10

let (value, _, negative) = math::unpack(result);
assert!(negative == false, ERR_NEGATIVE_SWITCHBOARD_PRICE);

1
2

MoveBit

https://docs.switchboard.xyz/guides/feeds/best-practices#integration-checklist

9

In the deposit() function, there is a possibility for users to deposit a very small amount that

results in a fee of zero. This allows users to bypass paying any deposit fees.

The function calculates the deposit fee based on the house_lp.deposit_fee percentage and the

original amount deposited.

If the amount is extremely small, the calculated fee may round down to zero.

Consequently, the _amount variable will remain unchanged, and the user can deposit the entire

amount without incurring any fee.

This issue allows users to make deposits without paying the intended deposit fee, potentially

leading to a loss of revenue for the system. The same issue for withdraw() function.

Suggestion: It is recommended to implement a minimum fee threshold or establish a lower limit

for the fee calculation. By setting a minimum fee, even for small deposits, users will be required

to pay a nominal fee, ensuring fairness and maintaining the intended revenue model for the

system.

Resolution: Added minimum_deposit to limit the minimum deposit amount.

Severity: Minor

Status: Fixed

Code Location: merkle-contract/sources/trading.move#L1637

TRD-2 tp_percent Should Be Less Than or Equal to pair_info.ma
ximum_profit

 let house_lp_coin_balance = vault::vault_balance<vault_type::HouseLPVaul
t, AssetT>();
 let supply = (option::extract<u128>(&mut coin::supply<MKLP>()) as
u64);
 let fee = safe_mul_div(_amount, house_lp.deposit_fee, FEE_POINTS_D
IVISOR);
 _amount = _amount - fee;
 let mintAmount: u64;
 if (supply == 0) {
 mintAmount = _amount;
 } else {
 mintAmount = safe_mul_div(supply, _amount, (house_lp_coin_bala
nce - (_amount + fee)));
 };

1

2

3

4
5
6
7
8
9

10

MoveBit

10

Descriptions:

The function execute_increase_order_internal() is responsible for executing an

increase order in a trading pair.

Inside the function, the stop-loss and take-profit prices of the position are updated based on

the order's type and the specified conditions.

If the order's take-profit trigger price and the maximum take-profit price are the same, the code

will assign that value to the take-profit trigger price of the position. In other words, there is no

preference for either value in this scenario, and they are considered equal.

 if (_order.is_long) {
 position_ref_mut.stop_loss_trigger_price =
 if (_order.stop_loss_trigger_price < position_ref_mut.
avg_price)
 {_order.stop_loss_trigger_price} else { 0 };

 let maximum_take_profit_price = safe_mul_div(
 position_ref_mut.avg_price,
 (position_ref_mut.size + maximum_profit),
 position_ref_mut.size
);
 position_ref_mut.take_profit_trigger_price = min(_order.ta
ke_profit_trigger_price, maximum_take_profit_price)
 } else {
 position_ref_mut.stop_loss_trigger_price =
 if (_order.stop_loss_trigger_price > position_ref_mut.
avg_price)
 {_order.stop_loss_trigger_price} else { U64_MAX };
 // If maximum profit is less than or equal to 0 in a shor
t position, it will be set to 1.
 // This is because a price of 0 cannot occur.
 let maximum_take_profit_price = safe_mul_div(
 position_ref_mut.avg_price,
 if (position_ref_mut.size > maximum_profit) { position
_ref_mut.size - maximum_profit } else 1,
 position_ref_mut.size
);
 position_ref_mut.take_profit_trigger_price = max(_order.ta
ke_profit_trigger_price, maximum_take_profit_price)
 };

1
2
3

4
5
6
7
8
9
10
11

12
13
14

15
16

17
18
19
20

21
22
23

24

MoveBit

11

However, inside the update_position_tp_sl() , an assertion is made to validate that the

calculated take-profit percentage is less than the maximum allowed profit percentage specified

in the pair's information. The business logic of this function, update_position_tp_sl() , is

different from execute_increase_order_internal() .

Suggestion: Ensure that tp_percent is less than or equal to pair_info.maximum_profit
 to avoid an invalid update to the take-profit trigger price.

 assert!(tp_percent < = pair_info.maximum_profit, E_UPDATE_TAKE_PROFIT_INVA
LID);

Resolution: Updated the code to ensure that tp_percent is less than or equal to

pair_info.maximum_profit.

Severity: Minor

Status: Fixed

Code Location: merkle-contract/sources/managed_trading.move#L62-106

Descriptions:

The admin can only register the ExecuteCapability to other addresses, but the admin lacks

permission for the burn ExecuteCapability capability. The following code only allows the

executor candidate to burn the ExecuteCapability .

MGT-1 The Admin Lacks the Permission for the Burn ExecuteCapabi
lity Capability.

 // validate max profit
 let price_change = safe_mul_div(
 abs(_take_profit_trigger_price, position_ref_mut.avg_price),
 BASIS_POINT,
 position_ref_mut.avg_price
);
 let tp_percent = safe_mul_div(position_ref_mut.size, price_change,
position_ref_mut.collateral);
 assert!(tp_percent < pair_info.maximum_profit, E_UPDATE_TAKE_PROFIT
_INVALID);

1
2
3
4
5
6
7

8

MoveBit

12

Suggestion: It is recommended to add admin permission to burn the ExecuteCapability .

Resolution: The admin has been granted this permission.

Severity: Informational

Status: Fixed

Code Location: merkle-contract/sources/house_lp.move#L33， L120

Descriptions:

The naming of E_COIN_NOW_INITIALIZED is not correct according to the comment: When th
e asset register with house_lp is not a coin , it should be E_COIN_NOT_INITIALI
ZED instead. Change it to the correct name to avoid confusion.

Suggestion:

HSL-2 Error Code E_COIN_NOW_INITIALIZED is A Bad Naming

 /// Burn ExecuteCapability
 /// Only allowed for executor candidate.
 public entry fun burn_execute_cap<PairType, CollateralType>(
 _host: &signer,
) acquires ExecuteCapabilityStore {
 // If @merkle calls this function, the modules may no longer be ava
ilable
 assert!(address_of(_host) != @merkle, E_NOT_AUTHORIZED);
 move_from<ExecuteCapabilityStore<PairType, CollateralType>>(address
_of(_host));
 }

1
2
3
4
5
6

7
8

9

/// When the asset register with house_lp is not a coin
const E_COIN_NOW_INITIALIZED: u64 = 4;

1
2

assert!(coin::is_coin_initialized<AssetT>(), E_COIN_NOW_INITIALIZED);1

MoveBit

13

Resolution: The name has been changed.

Severity: Minor

Status: Fixed

Code Location: merkle-contract/sources/house_lp.move#L248

Descriptions:

 It's a good practice to check that HouseLPVault has enough collateral to withdraw ,
otherwise, it will go deep down to the aptos_std::coin::extract to check the balance.

Suggestion: Add an assertion to make sure that LP collateral is more than withdraw amount.

HSL-3 Check Sufficient lp Collectral

/// When the asset register with house_lp is not a coin
const E_COIN_NOT_INITIALIZED: u64 = 4;

assert!(coin::is_coin_initialized<AssetT>(), E_COIN_NOT_INITIALIZED);

1
2
3
4

let coin_balance = vault::vault_balance<vault_type::HouseLPVault, AssetT>()
;
let supply = (option::extract<u128>(&mut coin::supply<MKLP>()) as u64);
let return_amount = safe_mul_div(coin_balance, _amount, supply);
let fee = safe_mul_div(return_amount, house_lp.withdraw_fee, FEE_POINTS_DIV
ISOR);
return_amount = return_amount - fee;
let withdraw_coin = vault::withdraw_vault<vault_type::HouseLPVault, AssetT>
(return_amount);
coin::deposit(user_addr, withdraw_coin);

1

2
3
4

5
6

7

MoveBit

14

Resolution: This check has been added.

Severity: Informational

Status: Acknowledged

Code Location: merkle-contract/sources/managed_fee_distributor.move；

merkle-contract/sources/managed_house_lp.move；

merkle-contract/sources/managed_price_oracle.move；

merkle-contract/sources/managed_trading.move；

merkle-contract/sources/managed_vault.move

Descriptions:

These are some centralized risks in the contract.

The admin has the authority to withdraw accumulated fees from the stake vault and the dev

vault, as well as the ability to set the weights for stake, LP, and dev in the fee distribution

through managed_fee_distributor.move .

The admin has the authority to register users, deposit and withdraw funds for a specific

collateral type in the house_lp module, as well as set deposit fees, withdrawal fees,

withdrawal divisions, and minimum deposit amounts for house_lp through managed_house_
lp.move .

The admin has the authority to register oracles, manage allowed update addresses, perform

updates, and configure various parameters in the price_oracle module for specific pair types

MGT-2 Centralization Risk

●

●

●

let coin_balance = vault::vault_balance<vault_type::HouseLPVault, AssetT>()
;
let supply = (option::extract<u128>(&mut coin::supply<MKLP>()) as u64);
let return_amount = safe_mul_div(coin_balance, _amount, supply);
let fee = safe_mul_div(return_amount, house_lp.withdraw_fee, FEE_POINTS_DIV
ISOR);
return_amount = return_amount - fee;
assert!(coin_balance >= return_amount, E_HOUSE_LP_AMOUNT_NOT_ENOUGH);
let withdraw_coin = vault::withdraw_vault<vault_type::HouseLPVault, AssetT>
(return_amount);

1

2
3
4

5
6
7

MoveBit

15

through managed_price_oracle.move.

The admin has the authority to initialize the module, set address executor candidates, claim

and burn execute capabilities, place orders, cancel orders, execute orders and exit positions,

pause and restart trading, and configure various parameters in the managed_trading module

for specific pair and collateral types through managed_trading.move.

The admin has the authority to register a vault for a specific VaultT and AssetT in the manag
ed_vault.move.

The executor has the authority to execute orders.

The executor has the authority to burn ExecuteCapability .

The executor has the authority to execute the take-profit, stop-loss, or liquidate function.

Suggestion: To mitigate the centralization risk in the smart contract, we recommend the

following. Resolution:

Foster community governance and participation to ensure decision-making power is

distributed among the system's participants.

Implement robust security measures to protect against potential attacks or malicious

actions, such as multi-signature.

Removing all centralized methods can be considered to permanently address centralized risks.

Informational Informational items are often recommendations to improve the style of the

code or to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They don't

post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They should be

fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive information at

risk, and often are not directly exploitable. All major issues should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

●

●

●

●

●

●

●

Appendix 1

Issue Level
●

●

●

●

●

MoveBit

16

Fixed: The issue has been resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code owner

confirms it's as designed, and decides to keep it.

This report is based on the scope of materials and documents provided, with a limited review at

the time provided. Results may not be complete and do not include all vulnerabilities. The review

and this report are provided on an as-is, where-is, and as-available basis. You agree that your

access and/or use, including but not limited to any associated services, products, protocols,

platforms, content, and materials, will be at your own risk. A report does not imply an

endorsement of any particular project or team, nor does it guarantee its security. These reports

should not be relied upon in any way by any third party, including for the purpose of making any

decision to buy or sell products, services, or any other assets. TO THE FULLEST EXTENT

PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS, AND

YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

Issue Status
●

●

Appendix 2

Disclaimer

MoveBit

