
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Haedal

Mon Dec 04 2023

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Haedal Audit Report

1 Executive Summary

1.1 Project Information

Description Haedal is a liquid staking protocol built on Sui that allows
anyone to stake their SUI tokens.

Type Staking

Auditors MoveBit

Timeline Mon Nov 20 2023 - Mon Dec 04 2023

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

1/15

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

HAS sources/hasui.move 043c51935bddf988961f1a5790f25
3dda55b90f6

TQU sources/table_queue.move 02257831926d5787f5a90d68061ec
8747c0136fb

MOV haedal_v2/Move.toml 1732bc625cfa7fd969afa11e890c31
ebba91124f

INT haedal_v2/sources/interface.move 8bf4d0d584e8fd20c12c393257664
8a9b40f341c

UTI haedal_v2/sources/util.move c09ed85724835f264a8e9b61970f7
ef1f2821785

STA haedal_v2/sources/staking.move 42f5621d5bf950835eb9f2b6e2ac8
4c6cb4b53fd

CON haedal_v2/sources/config.move 0f5766ff21302f57d2b4101871147f
4e67b38534

VAU haedal_v2/sources/vault.move c4f6a0535cfb5b57379e78c401b21
42831aaddec

OPE haedal_v2/sources/operate.move 9186d4025380a8f395ef392208908
7121eadd880

MAN haedal_v2/sources/manage.move 7a566f3d9757c16b256d1d65a7d2
8308d9255526

2/15

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 3 2

Informational 3 1 2

Minor 1 1 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/15

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/15

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/15

2 Summary

This report has been commissioned by Haedal to identify any potential issues and
vulnerabilities in the source code of the Haedal smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

CON-1 Unused Config Informational Acknowledged

STA-1 Incomplete Function About
Protocol Fee

Medium Fixed

STA-2 Users Cannot Unstake Small
Amounts In
request_unstake_instant Due To

Service Fee

Minor Fixed

STA-3 Unused Struct Informational Acknowledged

STA-4 EUnstakeNotEnoughSui Is Not
Appropriate For Certain Edge
Condition

Informational Fixed

6/15

3 Participant Process

Here are the relevant actors with their respective abilities within the Haedal Smart Contract :
Admin

The Admin can initialize the Staking object through initialize() .

The Admin can set the deposit fee through set_deposit_fee() .

The Admin can set the protocol fee through set_reward_fee() .

The Admin can set the validator reward fee through set_validator_reward_fee() .

The Admin can set the service fee through set_service_fee() .

The Admin can set the withdraw time limit through set_withdraw_time_limit() .

The Admin can set validator count through set_validator_count() .

The Admin can Migrate the data version through migrate() .

The Admin can collect the protocol fee through collect_rewards_fee() .

The Admin can collect the service fee through collect_service_fee() .

The Admin can toggle the stake status through toggle_stake() .

The Admin can toggle the unstake status through toggle_unstake() .

The Admin can toggle the claim status through toggle_claim() .

The Admin can stake the users' SUI to validators through do_stake() .

The Admin can update the exchange rate of haSUI/SUI through

update_total_rewards_onchain() .

The Admin can unstake the StakedSui objects from inactive validators through

unstake_inactive_validators() .

The Admin can unstake the StakedSui to approve the claim SUI through

do_unstake_onchain() .

The Admin can unstake all the StakedSui when the validators are risky through

unstake_pools() .

Operator

Operator can toggle the staking status with toggle_stake() .

7/15

Operator can toggle the unstaking status with toggle_unstake() .

Operator can toggle the claim status with toggle_claim() .

Operator can stake SUI to validators with do_stake() .

Operator can update the haSUI/SUI exchange rate with

update_total_rewards_onchain() .

Operator can unstake StakedSui from inactive validators with

unstake_inactive_validators() .

Operator can unstake StakedSui for SUI claims with do_unstake_onchain() .

Operator can unstake all StakedSui from risky validators with unstake_pools() .

User

The User can stake their SUI and get haSUI through request_stake() and

import_stake_sui_vec() .

The User can burn their haSUI and get SUI immediately through

request_unstake_instant() .

The User can burn the haSUI and get UnstakeTicket through

request_unstake_delay() .

The User can claim the SUI from UnstakeTicket through claim_v2() .

8/15

4 Findings

CON-1 Unused Config

Severity: Informational

Status: Acknowledged

Code Location:

haedal_v2/sources/config.move

Descriptions:

The deposit_fee and validator_reward_fee are configured in the config module , but they

are not used in the main logic contract.

Suggestion:

It is recommended to remove the related operations if there is no future usage plan for

deposit_fee and validator_reward_fee .

Resolution:

It is acknowledged by the dev team.

9/15

STA-1 Incomplete Function About Protocol Fee

Severity: Medium

Status: Fixed

Code Location:

haedal_v2/sources/staking.move#552

Descriptions:

The calculation of protocol fees is performed in the update_total_rewards_onchain

function, but no substantive functionality for collecting protocol fees has been found in the

contract, which will result in the admin not being able to collect the protocol fee.

Suggestion:

it is recommended to add the collect protocol fee operations.

Resolution:

The client modified the code and fixed this issue.

10/15

STA-2 Users Cannot Unstake Small Amounts In
request_unstake_instant Due To Service Fee

Severity: Minor

Status: Fixed

Code Location:

haedal_v2/sources/staking.move#314-347

Descriptions:

In request_unstake_instant users can unstake any amount from the vault balance and

there's some service fee being taken from users.

However, this design will prohibit small amount unstakes.Since there are no min unstaking

threshold, users can unstake as small as 1 mist.

However, let's say if max_exchange_sui_amount = 10 mist, then take service_fee as the

default one which is 90.

letlet fee_amount fee_amount == ((((max_exchange_sui_amount max_exchange_sui_amount asas u128u128)) ** ((service_fee service_fee asas u128u128)) //
((FEE_DENOMINATORFEE_DENOMINATOR asas u128u128)) asas u64u64));;

fee_amount = 10*90/1000 = 0 . And this will fail the below assertion even though

service_fee is certainly above 0.

assert!assert!((((service_fee service_fee ==== 00 |||| fee_amount fee_amount >> 00)),, EUnstakeInstantNoServiceFeeEUnstakeInstantNoServiceFee));;

Similar issues arise when service_fee is approching 0 but not euqal to 0 yet. And this

effectively disabling users to unstake in certain amounts.

Suggestion:

It is suggested to set a min unstaking threshold, or enable users to unstake small amounts

by removing service fee.

Resolution:

The client modified the code and fixed this issue.

11/15

STA-3 Unused Struct

Severity: Informational

Status: Acknowledged

Code Location:

haedal_v2/sources/staking.move#121,184

Descriptions:

The structs EpochClaim and SystemUnstaked are not used in the staking module.

Suggestion:

It is recommended to remove unused structs if there is no plan to use them in the future.

12/15

STA-4 EUnstakeNotEnoughSui Is Not Appropriate For Certain
Edge Condition

Severity: Informational

Status: Fixed

Code Location:

haedal_v2/sources/staking.move#322;

haedal_v2/sources/staking.move#356

Descriptions:

In the request_unstake_instant function, there is an assertion to make sure that the

max_exchange_sui_amount is in certain range.

assert!assert!((max_exchange_sui_amount max_exchange_sui_amount <=<= sui_vault_amount sui_vault_amount &&&& max_exchange_sui_amount max_exchange_sui_amount
>> 00,, EUnstakeNotEnoughSuiEUnstakeNotEnoughSui));;

However, if max_exchange_sui_amount > sui_vault_amount is met, it means maximum

exchange amount exceeds the amount available in the vault, which does not align with

EUnstakeNotEnoughSui .

Suggestion:

It is recommended to split the assertions and use error codes like EExceedsVaultAmount

for the frist condition.

Resolution:

The client modified the code and set the minimum unstake threshold to 1 SUI.

13/15

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

14/15

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

15/15

	192_page1.pdf
	192_page2.pdf

