
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

FlowX

Wed May 08 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

FlowX Audit Report

1 Executive Summary

1.1 Project Information

Description FlowX is the ecosystem-focused decentralized exchange built
on the Sui Blockchain.

Type Dex

Auditors MoveBit

Timeline Mon Apr 15 2024 - Wed May 08 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/FlowX-Finance/clmm-contracts

Commits 6e34506aba4f2c4bbc3c896b9c9f671e8cf2e00d
040cfd34b4b91687754563b63c8be3b9386f35a6

1/17

https://github.com/FlowX-Finance/clmm-contracts
https://github.com/FlowX-Finance/clmm-contracts/tree/6e34506aba4f2c4bbc3c896b9c9f671e8cf2e00d
https://github.com/FlowX-Finance/clmm-contracts/tree/040cfd34b4b91687754563b63c8be3b9386f35a6

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ACA sources/admin_cap.move 9db0d29b39bcffe787434375decf8
158d257d139

PMA sources/position_manager.move 1449d3c31d6ea438bed9312caa6d
6269c3560cb2

POS sources/position.move 6e8626ba34e93c1eabc319d1f07ac
bb348a7093d

VER sources/versioned.move 004e34e5c0e58498de66203c2239
3d1f509668c3

SMA sources/libs/swap_math.move 788bed12f6f2eb2ea48dca50df173
424b03d1060

MU2 sources/libs/math_u256.move 8f26a9ba3561514556d2472df7f02
47230575097

TUT sources/libs/test_utils.move efbcc1b750924efdbac5b865f5642
0c0ed626547

FMU6 sources/libs/full_math_u64.move 84b7b662cd4c518db038242c8916
5e9277e0ae54

FMU1 sources/libs/full_math_u128.move c46c0eea83a82d5a4686ebe1406b
61bf336fb264

LMA sources/libs/liquidity_math.move c9a6708ee76a00f27ee9e9a439c2c
e02218e577b

CON sources/libs/constants.move 6d84c684f7ef552344eb4810e5856
a72752150b4

2/17

COM sources/libs/comparator.move 66fdcd1fec7cac5ad1ca5348f11c60
3c454642c6

CAS sources/libs/caster.move 4f0cfe539fa48915b24a078aa08b1
400ed4bbaf8

TBI sources/libs/tick_bitmap.move 84301a8689ccb28373c9b9a4209cf
a76a52106c5

SPM sources/libs/sqrt_price_math.move bf06a4033109615853f974f11be34
bad1e5a0202

I32 sources/libs/i32.move cbd21adb2c658722e64d10d2342c
db1f0fa7f843

UTI sources/libs/utils.move b2d515c2061d5df7b7611c9f24567
cfeec7067e1

I12 sources/libs/i128.move 7dc6a3933e2829feb651fd7dee63f
de8be8fd152

I64 sources/libs/i64.move 936a6c2fabdd01585512c0ad548d
079d3bec1564

BMA sources/libs/bit_math.move c2ed88b7c5aba8396e352efbe298
9bdcfee11c27

TMA sources/libs/tick_math.move 663431610073d3a4ca20a9b0f890
d92305b2f11a

POO sources/pool.move b9aff6db8f7d56736f90e01f16d880
fe02728b88

SRO sources/swap_router.move da0c82dae13d8012837226b3aae6
7b4eb38fa739

ORA sources/oracle.move 441a3835e48985d9c0419b13ec9c
dede274ddc38

3/17

TIC sources/tick.move f484489391714c9d7e96b27570a6e
b94cbfdcbfa

PMA1 sources/pool_manager.move eb0e317b43df4ff7ceef2729a8323b
fcfc75e0b5

PMA sources/position_manager.move 50f20547bd361ca294e672c5ab861
da9060163db

POS sources/position.move 8fee7a69a210e0e9c642b987d69ae
47dfdc265e0

SMA sources/libs/swap_math.move 5b5c744f3f14e6f9cc87a2d0b13a82
6792b8033c

CAS sources/libs/caster.move 97902e1a3c50e2831b74f7bffbc02
16ab90f4df5

TBI sources/libs/tick_bitmap.move 5a79ed0ac3b417b19ffe34d2b814
d956b1e9f969

BMA sources/libs/bit_math.move c865ea52408e9274b1d4ad16948d
9532e752e969

POO sources/pool.move 4ab6118f6c075224d49156edc47dc
338538647b6

ORA sources/oracle.move 39fa8692a59f1e7cd4ad231918b63
55eb7518817

TIC sources/tick.move 880810f81c74b31df24350cf2595e4
99035828a1

4/17

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 6 0

Informational 2 2 0

Minor 2 2 0

Medium 0 0 0

Major 2 2 0

Critical 0 0 0

5/17

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

6/17

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/17

2 Summary

This report has been commissioned by FlowX to identify any potential issues and
vulnerabilities in the source code of the clmm-contracts smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

PMA-1 collect Parameter Checking May
Fail

Minor Fixed

POO-1 initialize Missing Version Checks Major Fixed

POO-2 May Be Wrong Parameters In
flash

Major Fixed

POO-3 Can Pass Token When Burning
Liquidity

Informational Fixed

VER-1 Lack of Events Emit Minor Fixed

VER-2 Unnecessary check_version Informational Fixed

8/17

3 Participant Process

Here are the relevant actors with their respective abilities within the clmm-contracts Smart
Contract :
Owner

The owner can collect the protocol fee accrued to the pool by the collect_protocol_fee

function.

The owner can set the protocol fee rate by the set_protocol_fee_rate function.

The owner can set the initial reward for the pool by the initialize_pool_reward

function.

The owner can increase the amount of rewards allocated to the pool by the

increase_pool_reward function.

The owner can extend reward allocation time by the extend_pool_reward_timestamp

function.

The owner can can add new fee_rate and tick_spacing by the enable_fee_rate function.

User

Users can open or close a position by the open_position and close_position

functions.

Users can swap coin_x for coin_y, or coin_y for coin_x by the swap function.

Users can flash loan coin_x and coin_y from the pool by the flash function.

Users can collect coins owed to a position by the collect function.

Users can collect rewards owed to a position by the collect_pool_reward function.

Users can add or reduce the liquidity of the positions they own by the

increase_liquidity and decrease_liquidity functions.

Users can create new pools by the create_pool or create_and_initialize_pool

functions.

Users can set the initial price for the pool by the initialize function.

9/17

4 Findings

PMA-1 collect Parameter Checking May Fail

Severity: Minor

Status: Fixed

Code Location:

sources/position_manager.move#219

Descriptions:

The collect function only allows the count_x_requested and count_y_requested to both

be non-zero in order to pass the check_zero_amount function and if the user's position has

only one token in it, he must be forced to pass one of them as an arbitrary value in order to

call the collect function.

Suggestion:

It is recommended to use the or logic instead of the and logic.

Resolution:

The client has already solved the problem based on our recommendations.

10/17

POO-1 initialize Missing Version Checks

Severity: Major

Status: Fixed

Code Location:

sources/pool.move#341

Descriptions:

There is no version checking when calling initialize function, so when the object is

upgraded or the code of those functions is modified, the user can still call the old initialize

function to initialize the pool which may lead to unexpected results.

Suggestion:

It is recommended to include the Versioned object in the parameter list of any function that

can modify the state.

Resolution:

The client has added version checking based on our recommendations.

11/17

POO-2 May Be Wrong Parameters In flash

Severity: Major

Status: Fixed

Code Location:

sources/pool.move#755-803

Descriptions:

In the flash function, if the money borrowed by the user is greater than the existing

number of the pool, it will automatically borrow the existing number of the pool of funds,

which will lead to the user receiving money not equal to the borrowed money, and the

handling fee is calculated by the user's input parameters, and in the FlashReceipt given to

the user is also the use of the input parameters rather than the value of the actual out of the

user, so, the user to repay the money may have been failed and do not know the reason, if

the user to return the money succeeded, which may be a huge amount of money to the

user's losses.

Suggestion:

It is recommended that users not be allowed to lend more than the available funds in the

pool.

Resolution:

The client has changed to the correct code as suggested.

12/17

POO-3 Can Pass Token When Burning Liquidity

Severity: Informational

Status: Fixed

Code Location:

sources/pool.move#405

Descriptions:

The modify_liquidity function is used to modify the liquidity of a given pool, a sufficient

number of x and y tokens need to be passed in to add liquidity, and no tokens should be

passed in to remove liquidity, i.e., the number of tokens should be 0. However, when the

user removes the liquidity, he can still pass tokens to the pool.

Suggestion:

It is recommended to confirm that this is compatible with the design concept.

Resolution:

The client has already solved the problem based on our recommendations.

13/17

VER-1 Lack of Events Emit

Severity: Minor

Status: Fixed

Code Location:

sources/versioned.move#41;

sources/position_manager.move#104;

sources/position_manager.move#211

Descriptions:

The contract lacks appropriate events for monitoring sensitive operations, which could

make it difficult to track sensitive actions or detect potential issues.

Suggestion:

It is recommended to emit events for those important functions.

Resolution:

The client has added events based on our suggestions.

14/17

VER-2 Unnecessary check_version

Severity: Informational

Status: Fixed

Code Location:

sources/versioned.move#34

Descriptions:

In the check_version_and_upgrade function, if the Versioned object is less than VERSION ,

then self.version will be set to the latest VERSION , and check_version will never throw an

exception after that, and if the Versioned object is equal to VERSION , then check_version

will not throw an exception either, so check_version plays no role in this function.

Suggestion:

It is recommended to optimize the logic of the code.

Resolution:

The client has already solved the problem based on our recommendations.

15/17

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

16/17

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

17/17

	339_page1.pdf
	339_page2.pdf

