
Audit Report

contact@movebit.xyz https://twitter.com/movebit_

Cetus Farming Smart Contract

Fri Jan 19 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

1/21

Cetus Farming Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description A farming

Type DeFi

Auditors MoveBit

Timeline Fri Dec 29 2023 - Fri Jan 05 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/CetusProtocol/cetus-clmm-sui

Commits cab10270ca5567772b47bad65bc2db0953bcc55e
8f83fca210929aa86053e2338c00204450170c46
26a210c342f590739f9360d1195d62180c2e4b54
61e18eb5ed3ac7c9bc84811a472fa03725ecb6a8

https://github.com/CetusProtocol/cetus-clmm-sui
https://github.com/CetusProtocol/cetus-clmm-sui/tree/cab10270ca5567772b47bad65bc2db0953bcc55e
https://github.com/CetusProtocol/cetus-clmm-sui/tree/8f83fca210929aa86053e2338c00204450170c46
https://github.com/CetusProtocol/cetus-clmm-sui/tree/26a210c342f590739f9360d1195d62180c2e4b54
https://github.com/CetusProtocol/cetus-clmm-sui/tree/61e18eb5ed3ac7c9bc84811a472fa03725ecb6a8

2/21

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV4 sui/stable-farming/Move.toml 4271cf3660b793b951d089ac65c7c
6ab623c79f8

ACL1 sui/stable-farming/sources/acl.mov
e

1e9c71ce06bded01c75c8adafe013
52d9c72239d

REW2 sui/stable-farming/sources/reward
er.move

1cd3ae49bbd4c51a1f46b9054b21
417b7240dadd

ROU2 sui/stable-farming/sources/router.
move

5a18b04aa0b79b2ff1772c5adff71
eeb0cf379a3

CON2 sui/stable-farming/sources/config.
move

cf8e633cb40d101ac3a3684848e69
6244c397a2f

POO2 sui/stable-farming/sources/pool.m
ove

7645b5da7af569e78e751b67a356
8366b56feb86

3/21

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 9 9 0

Informational 0 0 0

Minor 5 5 0

Medium 0 0 0

Major 4 4 0

Critical 0 0 0

4/21

1.4 MoveBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/21

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/21

2 Summary

This report has been commissioned by Cetus to identify any potential issues and
vulnerabilities in the source code of the Cetus Farming smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 9 issues of varying severity, listed below.

ID Title Severity Status

CON-1 Security Vulnerability in
add_operator Function of
config.move due to Missing

Contract Version Check

Major Fixed

POO-1 pending_reward Is Not
Compatible

Major Fixed

REW-1 Variable Return Value in Public
Function

Major Fixed

POO1-1 Reward Distribution Can Be
Refactored

Minor Fixed

POO1-2 Unnecessary Parameter Minor Fixed

REW1-1 Precision Loss Results in Rewards
being Left in the Contract and
Unable to be Withdrawn

Major Fixed

REW1-2 Incorrect Assert Location Minor Fixed

REW1-3 Unused Function Minor Fixed

REW1-4 Unused Function
borrow_mut_pool_share() in the

Minor Fixed

7/21

Contract

8/21

3 Participant Process

Here are the relevant actors with their respective abilities within the Cetus Farming Smart
Contract :
Admin

The Admin can set roles for the member through set_roles() .

The Admin can add a role to the member through add_role() .

The Admin can remove a role from the member through remove_role() .

The Admin can add an operator for the contract through add_operator() .

The Admin can set the package version through set_package_version() .

The Admin can withdraw the reward from the vault through

emergent_withdraw<RewardCoin>() .

Operator

The Operator can create a farming Pool related to clmmpool through

create_pool<CoinA, CoinB>() .

The Operator can update the Pool effective Tick range through

update_effective_tick_range<CoinA, CoinB>() .

The Operator can add reward RewardCoin for the clmm_pool through

add_rewarder<RewarderCoin, CoinA, CoinB>() .

The Operator can update the allocated point of the clmm_pool through

update_pool_allocate_point<RewardCoin, CoinA, CoinB>() .

The Operator can create a Rewarder type is RewardCoin through

create_rewarder<RewardCoin>() .

The Operator can update Rewarder emission speed through

update_rewarder<RewardCoin>() .

User

The User can deposit the clmm position info pool to get the farming rewarder

through deposit<CoinA, CoinB>() .

The User can withdraw clmm position from the farming pool, before the rewarder

should be harvested through withdraw() .

9/21

The User can harvest the farming rewarder through harvest<RewardCoin>() .

The User can add liquidity through add_liquidity<CoinA, CoinB>() .

The User can add liquidity by using the fix coin through add_liquidity_fix_coin<CoinA,

CoinB>() .

The User can remove liquidity through remove_liquidity<CoinA, CoinB>() .

The User can collect the fee of clmm_pool through collect_fee<CoinA, CoinB>() .

The User can collect the clmm reward through collect_clmm_reward<RewardCoin,

CoinA, CoinB>() .

The User can close position through close_position<CoinA, CoinB>() .

10/21

4 Findings

CON-1 Security Vulnerability in add_operator Function of
config.move due to Missing Contract Version Check

Severity: Major

Status: Fixed

Code Location:

stable-farming/sources/config.move#110

Descriptions:

The function add_operator() in the config.move lacks a check for the contract version. If

the caller invokes methods from an old version of the contract, and if there happen to be

vulnerabilities in the old version, this could potentially lead to serious security incidents.

Suggestion:

It is recommended to add a check for the contract version

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/21

POO-1 pending_reward Is Not Compatible

Severity: Major

Status: Fixed

Code Location:

sui/stable-farming/sources/pool.move#685-686,749-750

Descriptions:

Reward distribution is a crucial part of Cetus stable farming smart contract code. And indeed

most of the functions in pool.move have a while loop to update rewards.

However, in both add_liquidity_fix_coin and remove_liquidity , the pending_reward is

calculated as such :

letlet pending_reward pending_reward == ((accumulated_reward accumulated_reward asas u128u128)) -- pos_info pos_info..reward_debtreward_debt;;

while in other functions like add_liquidity , harvest , withdraw it is calculated this way:

letlet pending_reward pending_reward == ((accumulated_reward accumulated_reward asas u128u128)) -- pos_info pos_info..reward_debt reward_debt ++
pos_infopos_info..rewardreward;;

Without the addition of pos_info.reward , pending_reward would be calculated wrong and

cause major problems in reward distribution in add_liquidity_fix_coin and

remove_liquidity functions.

Suggestion:

It is suggested to fix the calculation of pending_reward in both add_liquidity_fix_coin and

remove_liquidity functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/21

REW-1 Variable Return Value in Public Function

Severity: Major

Status: Fixed

Code Location:

sui/clmmpool/sources/rewarder.move#315;

sui/stable-farming/sources/pool.move#594

Descriptions:

The function borrow_mut_pool_share returns a mutable reference to a value, which refers

to the key pool in manager.pool_shares . Consequently, the value corresponding to this

key- pool_share , can be modified by anyone, leading to errors in the contract when

calculating accumulate_pool_reward . And the function borrow_mut_clmm_position has

the same issue.

Suggestion:

It is recommended to modify the visibility to internal or friend .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/21

POO1-1 Reward Distribution Can Be Refactored

Severity: Minor

Status: Fixed

Code Location:

sui/integrate/sources/pool.move#605-619

Descriptions:

In pool.move several functions use a while loop to update and calculate the pool rewards.

For example, the one in add_liquidity_fix_coin is the same as the one in remove_liquidity .

whilewhile ((idx idx << vectorvector::::lengthlength((&&poolpool..rewardersrewarders)))) {{
 letlet rewarder_coin rewarder_coin == **vectorvector::::borrowborrow((&&poolpool..rewardersrewarders,, idx idx));;
 letlet pool_acc_per_share pool_acc_per_share == rewarderrewarder::::update_pool_shareupdate_pool_share((
 rewarder_managerrewarder_manager,,
 rewarder_coinrewarder_coin,,
 objectobject::::idid((clmm_poolclmm_pool)),,
 pool_sharepool_share,,
 clkclk
));;
 letlet pos_info pos_info == vec_mapvec_map::::get_mutget_mut((&&mutmut wrapped_pos_info wrapped_pos_info..rewardsrewards,,
&&rewarder_coinrewarder_coin));;
 letlet accumulated_reward accumulated_reward == full_math_u128full_math_u128::::full_mulfull_mul((old_shareold_share,,
pool_acc_per_sharepool_acc_per_share));;
 letlet pending_reward pending_reward == ((accumulated_reward accumulated_reward asas u128u128)) -- pos_info pos_info..reward_debtreward_debt;;
 pos_infopos_info..reward reward == pos_info pos_info..reward reward ++ pending_reward pending_reward;;
 pos_infopos_info..reward_debt reward_debt == ((full_math_u128full_math_u128::::full_mulfull_mul((shareshare,, pool_acc_per_share pool_acc_per_share)) asas
u128u128));;
 idx idx == idx idx ++ 11;;
 }}

Suggestion:

It is suggested to refactor the code and write a helper function to calculate the rewards to

improve the readability and reusability.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/21

POO1-2 Unnecessary Parameter

Severity: Minor

Status: Fixed

Code Location:

stable-farming/sources/pool.move#905

Descriptions:

In the collect_fee function, the parameters coin_a and coin_b are redundant. The return

value after calling the clmm_pool::collect_fee function is the balance type, and there is no

need to call the join function.

Suggestion:

It is recommended to remove coin_a and coin_b Parameters.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/21

REW1-1 Precision Loss Results in Rewards being Left in the
Contract and Unable to be Withdrawn

Severity: Major

Status: Fixed

Code Location:

integrate/sources/rewarder.move#404-407

Descriptions:

In the accumulate_pool_reward() function, the protocol first calculates the accumulated

rewards over the past time period. Then, based on the proportion of each reward pool, it

allocates these rewards to each pool. Finally, when calculating acc_per_share , it uses

the pool_acc_reward/total_pool_share .

let acc_reward = full_math_u128::full_mul(

 rewarder.emission_per_second,

 ((current_ts - last_reward_time) as u128)

);

 let pool_acc_reward = (acc_reward * (pool_rewarder_info.allocate_po

int as u256)) / (rewarder.total_allocate_point as u256);

 pool_rewarder_info.reward_released = pool_rewarder_info.reward_rele

ased + (pool_acc_reward as u128) / REWARD_PRECISION;

 pool_rewarder_info.acc_per_share = pool_rewarder_info.acc_per_shar

e + ((pool_acc_reward as u128) / pool_share);

 pool_rewarder_info.acc_per_share

Note that there are two instances of precision loss, once when calculating rewards for each

pool based on the proportion and another when calculating acc_per_share . This can result

in residual rewards in the reward pool that cannot be withdrawn after all users have claimed

their rewards.

Suggestion:

It is recommended to implement a method in the reward pool allowing a specific role to

withdraw rewards. Additionally, if deposit_rewarder() is accidentally called to recharge

16/21

rewards, a withdrawal mechanism should be available.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/21

REW1-2 Incorrect Assert Location

Severity: Minor

Status: Fixed

Code Location:

stable-farming/sources/rewarder.move#299

Descriptions:

Assert of the reward_balance and amount quantities are ineffective when placed after the

split function, they should be placed before.

Suggestion:

It is recommended to assert before the split function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/21

REW1-3 Unused Function

Severity: Minor

Status: Fixed

Code Location:

stable-farming/sources/rewarder.move#317

Descriptions:

The function borrow_mut_pool_share() is not utilized within the contract. Redundant

functions like this may result in higher gas consumption during deployment and can impact

the overall readability of the contract.

Suggestion:

It is recommended to remove redundant functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/21

REW1-4 Unused Function borrow_mut_pool_share() in the
Contract

Severity: Minor

Status: Fixed

Code Location:

stable-farming/sources/rewarder.move#317

Descriptions:

The function borrow_mut_pool_share() is not utilized within the contract. Redundant

functions like this may result in higher gas consumption during deployment and can impact

the overall readability of the contract.

publicpublic((friendfriend)) fun fun borrow_mut_pool_shareborrow_mut_pool_share((managermanager:: &&mut mut RewarderManagerRewarderManager,, poo poo
ll:: IDID)):: &&mut u128 mut u128 {{
linked_tablelinked_table::::borrow_mutborrow_mut((&&mut managermut manager..pool_sharespool_shares,, pool pool)) }}

Suggestion:

It is recommended to remove redundant functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/21

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

21/21

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	219_page1.pdf
	219_page2.pdf

