
Audit Report

contact@movebit.xyz https://twitter.com/movebit_

BAPTSWAP

Mon Dec 18 2023

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_


1/62

BAPTSWAP Audit Report

1 Executive Summary

1.1 Project Information

Description BAPTSWAP is the decentralized exchange, powered by BAPT
LABS

Type Dex

Auditors MoveBit

Timeline Wed Nov 15 2023 - Mon Dec 18 2023

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/BAPTSWAP/V2-core

Commits 37005ff50d6a53a84ba23e2fc50ecf4d6f9d7691
7e3fe20cea068c731bc0d76fc7d654455a454d1a
605766ef22b5234159631675a9e9f246a28676e7
1b6d6d9fd314b92378eac6fccc8840f706d67c51
2b5aae52f933f74a0650b20265830949f9b49927
c9aa8f1b0544a1ad2adac41853d87dc5f3677c8d
01f0e05dc25cb9585a66938426103a7434336586
ba48a64b1f15cacdd86346a3599d031990269a1d
39458ecb7f5e1f24bc1c3e9d0a1640da1080adf3
be5b720e4c5e6fa9cbd14fb93e3788c94c5779a4

https://github.com/BAPTSWAP/V2-core
https://github.com/BAPTSWAP/V2-core/tree/37005ff50d6a53a84ba23e2fc50ecf4d6f9d7691
https://github.com/BAPTSWAP/V2-core/tree/7e3fe20cea068c731bc0d76fc7d654455a454d1a
https://github.com/BAPTSWAP/V2-core/tree/605766ef22b5234159631675a9e9f246a28676e7
https://github.com/BAPTSWAP/V2-core/tree/1b6d6d9fd314b92378eac6fccc8840f706d67c51
https://github.com/BAPTSWAP/V2-core/tree/2b5aae52f933f74a0650b20265830949f9b49927
https://github.com/BAPTSWAP/V2-core/tree/c9aa8f1b0544a1ad2adac41853d87dc5f3677c8d
https://github.com/BAPTSWAP/V2-core/tree/01f0e05dc25cb9585a66938426103a7434336586
https://github.com/BAPTSWAP/V2-core/tree/ba48a64b1f15cacdd86346a3599d031990269a1d
https://github.com/BAPTSWAP/V2-core/tree/39458ecb7f5e1f24bc1c3e9d0a1640da1080adf3
https://github.com/BAPTSWAP/V2-core/tree/be5b720e4c5e6fa9cbd14fb93e3788c94c5779a4


2/62

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml dd7ff81230c5ff8bbfdf19c2db15c0
48451e883e

RV2 sources/router_v2.move a03fceaa23c8b5b9f5aa87487024b
f216ee412e3

SV2 sources/swap_v2.move 3c96c00c858c4aebad0eb0fa96122
4d76344f681

CON sources/utils/constants.move 0c0875a3d98cedd11c0b640a348b
c3986552f678

UTI sources/utils/utils.move 31a83aba79158b5e29595d57df71
2b0380bdf879

ERR sources/utils/errors.move 2c83e25832d068dd40ae299e7990
46dc87c89f46

SUV2 sources/utils/swap_utils_v2.move b722cc5ad6f971b709a62c7e2b379
7cdf4b1879e

ADM sources/admin.move 065fe17e946df2c9913c5fa8a5682b
8e94cc4778

STA sources/stake.move 4952e1a37c819f4d9fd3c10581f2cc
22b5927cf2

FOT sources/fee_on_transfer.move ee0ed69995eb7722623a922d8393
ff6f0e5f36c4



3/62

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 37 35 2

Informational 5 5 0

Minor 14 13 1

Medium 3 3 0

Major 14 13 1

Critical 1 1 0



4/62

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type



5/62

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.



6/62

2 Summary

This report has been commissioned by BAPTSWAP to identify any potential issues and
vulnerabilities in the source code of the BAPTSWAP smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 37 issues of varying severity, listed below.

ID Title Severity Status

ADM-1 The Distinction is Lacking When
Setting Admin And
treasury_address

Major Fixed

ADM-2 Lack of Access Control Major Fixed

ADM-3 Permission Conflict Major Fixed

ADM-4 Sensitive Operation Lacks Event Minor Fixed

ADM-5 The Comments Do Not Match the
Actual Functionality

Informational Fixed

ADM-6 The Comment in the
claim_treasury_previliges()

Function is Incorrect

Informational Fixed

FOT-1 Functions with Similar Functionality Minor Fixed

RV2-1 Nonexistent Token Pair Major Fixed

RV2-2 The Admin is Unable to Update the
Liquidity Fee and Treasury Fee

Major Fixed

RV2-3 Unused Private Function Minor Fixed



7/62

RV2-4 Code Refactoring Suggestions in
router_v2  Module

Minor Fixed

RV2-5 The Specification for Assert
Statements

Minor Fixed

STA-1 Updating Magnified Dividends Per
Share during Unstaking is Incorrect

Major Fixed

STA-2 Direct Invocation Risk in
unstake_tokens()  and
claim_rewards()  Functions in
stake  Module

Medium Fixed

STA-3 Optimization through
Consolidating claim_rewards()
and unstake_tokens()  Functions

Minor Fixed

SV2-1 The Constant Product Rule is
Compromised, Enabling Pool
Draining

Critical Fixed

SV2-2 There is No Slippage Protection
During The Distribution of DEX
Fees

Major Fixed

SV2-3 Infinite Recursion in
distribute_dex_fees()  Leading to

Transaction Failure

Major Fixed

SV2-4 Single-step Ownership Transfer
Can be Dangerous

Major Fixed

SV2-5 Initializing fee_to  As
ZERO_ACCOUNT  May Result In

Rransferring Fees to The Zero
Address

Major Fixed

SV2-6 When Calculating Fees for Token
Info Y Only, There is An Incorrect

Major Fixed



8/62

Passing of rewards_coins

SV2-7 Centralization Risk Major Acknowledged

SV2-8 Token Extraction Mismatch in Fee
Distribution Logic

Major Fixed

SV2-9 Incorrect Fee Handling in
swap_with_no_fee()

Major Fixed

SV2-10 Update the Reserves within the
swap()  Function

Medium Fixed

SV2-11 Update
magnified_dividends_per_share

Values When staked_tokens
Reaches Zero

Medium Fixed

SV2-12 The FeeChangeEvent Structure is
Not Being Utilized

Minor Fixed

SV2-13 Redundant Operations in the Code Minor Fixed

SV2-14 Accessibility Contradiction in the
Utilization of
swap_exact_x_to_y_direct()

Function

Minor Fixed

SV2-15 The Necessity of Controlling Return
Value Order in the
token_reserves()  Function

Minor Fixed

SV2-16 Unused Constant Minor Fixed

SV2-17 Code Redundancy in The
toggle_individual_token_liquidity_fe

e()  Function

Minor Fixed

SV2-18 Residual Coin Unable to be
Extracted

Minor Acknowledged



9/62

SV2-19 Redundant Pair Creation Check in
init_rewards_pool()  Function

Minor Fixed

SV2-20 The Conventions for Using Boolean
Values in Conditional Statements

Informational Fixed

SV2-21 Function Name Typo Informational Fixed

SV2-22 The
toggle_individual_token_rewards_f

ee()  Function's Functionality is
Inconsistent With Its Comment

Informational Fixed



10/62

3 Participant Process

Here are the relevant actors with their respective abilities within the BAPTSWAP Smart
Contract :
Admin

Admin can offer admin previliges through the offer_admin_previliges()  function.

Admin can offer treasury previliges through the offer_treasury_previliges()  function.

Admin can cancel previliges through the cancel_admin_previliges()  function.

Admin can claim previliges through the claim_admin_previliges()  function.

Admin can set dex liquidity fee through the set_dex_liquidity_fee()  function.

Admin can set dex treasury fee through the set_dex_treasury_fee()  function.

Admin can updates dex fee given a tier through the update_fee_tier()  function.

Treasury

Treasury can cancel previliges through the cancel_treasury_previliges()  function.

Treasury can claim previliges through the claim_treasury_previliges()  function.

User

Users can create a pair from 2 Coins through the  create_pair()  function.

Users can stake tokens in pool through the  stake_tokens_in_pool()  function.

Users can unstake tokens from pool through the  unstake_tokens_from_pool()

function.

Users can claim rewards from pool through the  claim_rewards_from_pool()  function.

Users can add Liquidity, create pair if it's needed through the  add_liquidity()  function.

Users can remove liquidity through the  remove_liquidity()  function.

Users can swap exact input amount of X to maxiumin possible amount of Y through

the  swap_exact_input()  function.

Users can swap miniumn possible amount of X to exact output amount of Y through

the  swap_exact_output()  function.



11/62

Users can swap exact input with z as intermidiate through

the  swap_exact_input_with_z_as_intermidiate()  function.

Users can swap exact input with apt as intermidiate through

the  swap_exact_input_with_apt_as_intermidiate()  function.

Users can swap exact output with z as intermidiate through

the  swap_exact_output_with_z_as_intermidiate()  function.

Users can swap exact output with apt as intermidiate through

the  swap_exact_output_with_apt_as_intermidiate()  function.

Users can register lp through the  register_lp()  function.

Users can register token through the  register_token()  function.

Token Owner

The owner of token can initialize individual token fees through

the  initialize_fee_on_transfer()  function.

The owner of token can set liquidity fee through the  set_liquidity_fee()  function.

The owner of token can set reward fee through the  set_rewards_fee()  function.

The owner of token can set team fee through the  set_team_fee()  function.

The owner of token can add fee on transfer to a pair through

the  register_fee_on_transfer_in_a_pair()  function.

The owner of token can claim team fees in a given pair through

the  claim_accumulated_team_fee()  function.

The owner of token can toggle rewards fee through the  toggle_rewards_fee()  function.

The owner of token can toggle all individual token fees through the  toggle_all_fees()

function.

The owner of token can toggle liquidity fee through the  toggle_liquidity_fee()  function.

The owner of token can toggle team fee through the  toggle_team_fee()  function.



12/62

4 Findings

ADM-1 The Distinction is Lacking When Setting Admin And
treasury_address

Severity: Major

Status: Fixed

Code Location:

sources/admin.move#73,82

Descriptions:

Use offer_admin_previliges()  and offer_treasury_previliges()  to set admin  and

treasury_address , but lacking differentiation between role types can result in a situation

where the recipient of treasury_address  calling the function claim_admin_previliges()  can

make themselves the admin, and vice versa. This role confusion might lead to significant

losses in the contract.

Suggestion:

It is recommended to make distinctions for different roles when setting recipients and

perform role verification upon reception.

Resolution:

This issue has been fixed. The client has differentiated between different roles.



13/62

ADM-2 Lack of Access Control

Severity: Major

Status: Fixed

Code Location:

sources/admin.move#91-99

Descriptions:

The cancel_admin_previliges  and cancel_treasury_previliges  functions lack any form of

access control. This implies that anyone can directly cancel any pending privileges, making it

susceptible to exploitation by malicious actors and leading to potential failures in the proper

execution of privilege transfers.

        public entry fun public entry fun cancel_admin_previligescancel_admin_previliges((signer_refsigner_ref::  &&signersigner,, id id::  u64u64)) acquires  acquires PendingPending  
{{
                // destruct the pending resource// destruct the pending resource
                smart_tablesmart_table::::removeremove<<u64u64,, address address>>((&&mutmut borrow_global_mut borrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id));;
        }}

        public entry fun public entry fun cancel_treasury_previligescancel_treasury_previliges((signer_refsigner_ref::  &&signersigner,, id id::  u64u64)) acquires  acquires 
PendingPending  {{
                // destruct the pending resource// destruct the pending resource
                smart_tablesmart_table::::removeremove<<u64u64,, address address>>((&&mutmut borrow_global_mut borrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id));;
        }}

Suggestion:

It is recommended to incorporate robust access control mechanisms for the

cancel_admin_previliges  and cancel_treasury_previliges  functions.

Resolution:

This issue has been fixed. The client has already implemented additional access controls for

this.



14/62

ADM-3 Permission Conflict

Severity: Major

Status: Fixed

Code Location:

sources/admin.move#73-89

Descriptions:

The presence of multiple simultaneous pending admin and treasury privileges can result in

permission conflicts. For instance, if two pending admin privileges coexist, both have the

ability to invoke the claim_admin_previliges  function to acquire permissions. This scenario

can lead to the loss of permissions for another admin, causing a conflict in permissions.

        // from the perspective of the sender// from the perspective of the sender
        public entry fun public entry fun offer_admin_previligesoffer_admin_previliges((signer_refsigner_ref::  &&signersigner,, receiver_addr receiver_addr:: address address,, id id::  
u64u64)) acquires  acquires AdminInfoAdminInfo,,  PendingPending  {{
                // assert signer is the admin// assert signer is the admin
                assert!assert!((signersigner::::address_ofaddress_of((signer_refsigner_ref))  ====  get_adminget_admin(()),,  errorserrors::::not_adminnot_admin(())));;
                // assert receiver_addr is not the admin// assert receiver_addr is not the admin
                assert!assert!((receiver_addr receiver_addr !=!=  get_adminget_admin(()),,  errorserrors::::same_addresssame_address(())));;
                // create a new table entry// create a new table entry
                smart_tablesmart_table::::addadd<<u64u64,, address address>>((&&mutmut borrow_global_mut borrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id,, receiver_addr receiver_addr))
        }}

        public entry fun public entry fun offer_treasury_previligesoffer_treasury_previliges((signer_refsigner_ref::  &&signersigner,, receiver_addr receiver_addr:: address address,,  
idid::  u64u64)) acquires  acquires AdminInfoAdminInfo,,  PendingPending  {{
                // assert signer is the admin// assert signer is the admin
                assert!assert!((signersigner::::address_ofaddress_of((signer_refsigner_ref))  ====  get_adminget_admin(()),,  errorserrors::::not_adminnot_admin(())));;
                // assert receiver_addr is not the admin// assert receiver_addr is not the admin
                assert!assert!((receiver_addr receiver_addr !=!=  get_treasury_addressget_treasury_address(()),,  errorserrors::::same_addresssame_address(())));;
                // create a new table entry// create a new table entry
                smart_tablesmart_table::::addadd<<u64u64,, address address>>((&&mutmut borrow_global_mut borrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id,, receiver_addr receiver_addr))
        }}

Suggestion:



15/62

It is recommended to restrict the simultaneous existence of multiple pending admin and

treasury privileges.

Resolution:

This issue has been fixed. The client has been modified to have only one admin and treasury

privilege simultaneously.



16/62

ADM-4 Sensitive Operation Lacks Event

Severity: Minor

Status: Fixed

Code Location:

sources/admin.move#73-180

Descriptions:

In the contract, some sensitive operations lack event listeners, making it difficult for external

tracking of changes in related data within the contract.

The functions affected by this issue include offer_admin_previliges() ,

cancel_admin_previliges() , claim_admin_previliges() , and set_dex_liquidity_fee() ,among

others.

Suggestion:

It is recommended to add events similar to other operations to facilitate monitoring

changes within the contract.

Resolution:

This issue has been acknowledged. The client has added events for critical operations.



17/62

ADM-5 The Comments Do Not Match the Actual Functionality

Severity: Informational

Status: Fixed

Code Location:

sources/admin.move#203-214

Descriptions:

The actual functionality here indicates that the receiver_addr  cannot be the

treasury_address . The comment is incorrect.

  public entry fun offer_treasury_previliges(signer_ref: &signer, receiver_addr: address)public entry fun offer_treasury_previliges(signer_ref: &signer, receiver_addr: address)  
acquires AdminInfo, Pending {acquires AdminInfo, Pending {
                // assert no request is pending// assert no request is pending
                assert!(smart_table::length(&borrow_global_mut<Pending<Treasury>>assert!(smart_table::length(&borrow_global_mut<Pending<Treasury>>
(constants::get_resource_account_address()).table) == 0, errors::pending_request());(constants::get_resource_account_address()).table) == 0, errors::pending_request());
                // assert signer is the admin// assert signer is the admin
                assert!(signer::address_of(signer_ref) == get_admin(), errors::not_admin());assert!(signer::address_of(signer_ref) == get_admin(), errors::not_admin());
                // assert receiver_addr is not the admin// assert receiver_addr is not the admin
                assert!(receiver_addr != get_treasury_address(), errors::same_address());assert!(receiver_addr != get_treasury_address(), errors::same_address());
                // create a new table entry// create a new table entry
                smart_table::add<Treasury, address>(&mut borrow_global_mut<Pending<Treasury>>smart_table::add<Treasury, address>(&mut borrow_global_mut<Pending<Treasury>>
(constants::get_resource_account_address()).table, Treasury {}, receiver_addr);(constants::get_resource_account_address()).table, Treasury {}, receiver_addr);
                // emit event// emit event
                emit_ownership_transfer_request_event(receiver_addr);emit_ownership_transfer_request_event(receiver_addr);
        }}

Suggestion:

It is recommended to update the comments to accurately reflect their corresponding

functionalities.

Resolution:

This issue has been fixed. The client has made modifications to the comments.



18/62

ADM-6 The Comment in the claim_treasury_previliges()
Function is Incorrect

Severity: Informational

Status: Fixed

Code Location:

sources/admin.move#116

Descriptions:

In the function admin.claim_treasury_previliges() , there is a comment indicating "update

admin info" which is incorrect. It should be corrected to "update treasury info"

        publicpublic entry fun  entry fun claim_treasury_previligesclaim_treasury_previliges((signer_refsigner_ref::  &&signersigner,,  idid:: u64 u64)) acquires  acquires 
AdminInfoAdminInfo,,  PendingPending  {{
                // assert id exists and the signer is the receiver// assert id exists and the signer is the receiver
                assertassert!!((smart_tablesmart_table::::containscontains<<u64u64,, address address>>((&&borrow_global_mutborrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id)),,  11));;
                assertassert!!((signersigner::::address_ofaddress_of((signer_refsigner_ref))  ====  
**smart_tablesmart_table::::borrowborrow((&&borrow_global_mutborrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id)),,  11));;
                // update admin info // update admin info 
                set_treasury_addressset_treasury_address((**smart_tablesmart_table::::borrowborrow((&&borrow_global_mutborrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id))));;
                // remove the entry// remove the entry
                smart_tablesmart_table::::removeremove<<u64u64,, address address>>((&&mut borrow_global_mutmut borrow_global_mut<<PendingPending>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())))..tabletable,, id id));;
        }}

Suggestion:

It is recommended to modify the corresponding comments accordingly.

Resolution:

This issue has been fixed. The client has updated the remarks accordingly.



19/62

FOT-1 Functions with Similar Functionality

Severity: Minor

Status: Fixed

Code Location:

sources/fee_on_transfer.move#217,235

Descriptions:

Within fee_on_transfer.move , the functions get_info()  and get_fee_on_transfer_info()

serve the same purpose. The only difference lies in their visibility. get_fee_on_transfer_info()

can entirely replace get_info() . Redundant code may lead to increased gas consumption

and impact code readability.

Suggestion:

It is recommended to delete the function get_info() .

Resolution:

This issue has been fixed. The client deleted the function get_fee_on_transfer_info() .



20/62

RV2-1 Nonexistent Token Pair

Severity: Major

Status: Fixed

Code Location:

sources/router_v2.move#227,229,244,246;

sources/swap_v2.move#1583,1603

Descriptions:

In the function swap_v2::swap_exact_fee_to_apt() , it attempts to retrieve information about

<TokenPairMetadata<X, APT>> . However, under normal circumstances, such information

doesn't exist unless created using the create_pair()  function. Doing so would entail creating

pairs for all tokens with APT , which clearly doesn't align with logic. <TokenPairReserve<X,

APT>>  faces a similar issue.

Suggestion:

It is recommended to use token X as the fee and transfer it to the fee_to  address if the

token pair does not exist.

Resolution:

This issue has been fixed. The client has deleted the code related to APT .



21/62

RV2-2 The Admin is Unable to Update the Liquidity Fee and
Treasury Fee

Severity: Major

Status: Fixed

Code Location:

sources/router_v2.move#1261,1277

Descriptions:

The swap_v2.set_dex_liquidity_fee()  function is marked as public(friend), indicating that it is

accessible to modules declared as "friends" of the current module.

  publicpublic((friendfriend)) fun  fun set_dex_liquidity_feeset_dex_liquidity_fee((
                sendersender::  &&signersigner,,
                new_feenew_fee:: u128 u128
        )) acquires  acquires SwapInfoSwapInfo  {{
                letlet swap_info  swap_info == borrow_global_mut borrow_global_mut<<SwapInfoSwapInfo>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                // assert sender is admin// assert sender is admin
                assertassert!!((signersigner::::address_ofaddress_of((sendersender))  ==== swap_info swap_info..adminadmin,,  ERROR_NOT_ADMINERROR_NOT_ADMIN));;
                // assert new fee is not equal to the existing fee// assert new fee is not equal to the existing fee
                assertassert!!((new_fee new_fee !=!= swap_info swap_info..liquidity_fee_modifierliquidity_fee_modifier,,  11));;
                // assert the newer total fee is less than the threshold// assert the newer total fee is less than the threshold
                assertassert!!((does_not_exceed_dex_fee_thresholddoes_not_exceed_dex_fee_threshold((new_fee new_fee ++  
swap_infoswap_info..treasury_fee_modifiertreasury_fee_modifier))  ====  truetrue,,  11));;
                // update the fee// update the fee
                swap_infoswap_info..liquidity_fee_modifierliquidity_fee_modifier  == new_fee new_fee;;
        }}

However, in the protocol, only baptswap_v2::router_v2  is declared as a friend.

        use bapt_frameworkuse bapt_framework::::deployerdeployer;;

        friend baptswap_v2friend baptswap_v2::::router_v2router_v2;;

The issue arises because the router_v2  contract does not invoke the

set_dex_liquidity_fee()  method, preventing the protocol from updating the liquidity fee. The



22/62

function ser_dex_treasury_fee()  � set_individual_token_team_fee()  and

set_individual_token_liquidity_fee()  also face a similar issue.

Suggestion:

It is recommended to remove the friend modifier and change the function to entry. This is

because the function already includes a check for whether the sender is an admin or token

owner internally.

Resolution:

This issue has been fixed. The client has updated the implementation logic.



23/62

RV2-3 Unused Private Function

Severity: Minor

Status: Fixed

Code Location:

sources/router_v2.move#118

Descriptions:

The function assert_pair_is_not_created()  defined in module router_v2  is not used, which

leads to increased gas consumption and reduces the readability and understandability of

the code.

Suggestion:

It is recommended to delete this function.

Resolution:

This issue has been fixed. The client has deleted this function.



24/62

RV2-4 Code Refactoring Suggestions in router_v2  Module

Severity: Minor

Status: Fixed

Code Location:

sources/router_v2.move#40,54,69,82

Descriptions:

In the router_v2  module, lines 40, 54, 69, and 82 can be replaced with a function named

assert_pair_is_created() , as they serve the same purpose. This change would enhance

readability and understanding while reducing code duplication. Additionally, the code on line

55 is repeated across multiple functions and could be encapsulated into its function for

reusability.

Suggestion:

It is recommended to replace Repetitive Code with Function Calls

Resolution:

This issue has been fixed. The client has used an alternative function.



25/62

RV2-5 The Specification for Assert Statements

Severity: Minor

Status: Fixed

Code Location:

sources/router_v2.move#226,243;

sources/swap_v2.move#263,264,690,760,792,824,1269,1271,1285,1287,1304,1306,1321,1323,1338,13

Descriptions:

The error codes in assert statements show a number of '1's. Best practice suggests using

constants, ensuring different error code constants have distinct values.

Suggestion:

It is recommended to modify the error codes in assert statements to align with best

practices.

Resolution:

This issue has been fixed. The client has modified the error code of the assert.



26/62

STA-1 Updating Magnified Dividends Per Share during
Unstaking is Incorrect

Severity: Major

Status: Fixed

Code Location:

sources/stake.move#220-221

Descriptions:

When users generate fees during transactions in the swap_v2  contract, the protocol calls

stake.distribute_rewards()  to distribute these fees to the stakers and update the magnitude

values.

            ifif  ((metadatametadata..rewards_feerewards_fee  >>  00))  {{
                                letlet rewards_coins  rewards_coins == coin coin::::extractextract<<XX>>((&&mut metadatamut metadata..balance_xbalance_x,,  
((amount_to_rewards amount_to_rewards asas u64 u64))));;
                                stakestake::::distribute_rewardsdistribute_rewards<<XX,,  YY>>((rewards_coinsrewards_coins,,  coincoin::::zerozero<<YY>>(())));;
                        }};;
        publicpublic((friendfriend)) fun distribute_rewards fun distribute_rewards<<XX,,  YY>>((
                rewards_xrewards_x:: coin coin::::CoinCoin<<XX>>,,  
                rewards_yrewards_y:: coin coin::::CoinCoin<<YY>>
        )) acquires  acquires TokenPairRewardsPoolTokenPairRewardsPool  {{
                // Update pool// Update pool
                update_poolupdate_pool<<XX,,  YY>>((coincoin::::valuevalue<<XX>>((&&rewards_xrewards_x)),,  coincoin::::valuevalue<<YY>>((&&rewards_yrewards_y))));;

                letlet rewards_pool  rewards_pool == borrow_global_mut borrow_global_mut<<TokenPairRewardsPoolTokenPairRewardsPool<<XX,,  YY>>>>
((constantsconstants::::get_resource_account_addressget_resource_account_address(())));;
                coincoin::::mergemerge((&&mut rewards_poolmut rewards_pool..balance_xbalance_x,, rewards_x rewards_x));;
                coincoin::::mergemerge((&&mut rewards_poolmut rewards_pool..balance_ybalance_y,, rewards_y rewards_y));;
        }}

However, when users unstake, the protocol also updates the magnified dividends per share.

The calculation involves adding ((amount as u128) * pool_info.precision_factor /

(pool_info.staked_tokens as u128))  to the original per share x or per share y values.

          ifif  ((amount amount >>  00))  {{
                                utilsutils::::transfer_outtransfer_out<<XX>>((&&mut user_infomut user_info..staked_tokensstaked_tokens,, sender sender,, amount amount));;



27/62

                                pool_infopool_info..staked_tokensstaked_tokens  == pool_info pool_info..staked_tokensstaked_tokens  -- amount amount;;
                                // update magnified dividends per share// update magnified dividends per share
                                pool_infopool_info..magnified_dividends_per_share_xmagnified_dividends_per_share_x  ==  
pool_infopool_info..magnified_dividends_per_share_xmagnified_dividends_per_share_x  ++  ((((amount amount asas u128 u128))  **  
pool_infopool_info..precision_factorprecision_factor  //  ((pool_infopool_info..staked_tokensstaked_tokens  asas u128 u128))));;
                                pool_infopool_info..magnified_dividends_per_share_ymagnified_dividends_per_share_y  ==  
pool_infopool_info..magnified_dividends_per_share_ymagnified_dividends_per_share_y  ++  ((((amount amount asas u128 u128))  **  
pool_infopool_info..precision_factorprecision_factor  //  ((pool_infopool_info..staked_tokensstaked_tokens  asas u128 u128))));;
                        }};;

This is incorrect, as it causes the pool_info.magnified_dividends_per_share_x  or

pool_info.magnified_dividends_per_share_y  values to increase without actual rewards being

distributed to the rewards pool.

Subsequent users who attempt to claim rewards or unstake may receive more rewards, as

the values of pool_info.magnified_dividends_per_share_x  or

pool_info.magnified_dividends_per_share_y  increase. This could potentially lead to users

being unable to withdraw rewards or funds in future unstaking or reward claiming

transactions, resulting in their funds being locked in the contract.

Suggestion:

It is recommended to refrain from updating magnified dividends per share during unstaking.

Resolution:

This issue has been fixed. The client removed the update code during unstaking.



28/62

STA-2 Direct Invocation Risk in unstake_tokens()  and
claim_rewards()  Functions in stake  Module

Severity: Medium

Status: Fixed

Code Location:

sources/stake.move#183,265

Descriptions:

The function unstake_tokens()  in the stake  module can be directly called. According to the

contract code, only one of TokenPairRewardsPool<X, Y>  and TokenPairRewardsPool<Y, X>

exists based on the sorting of tokens. However, this function doesn't verify the existence of

TokenPairRewardsPool<Y, X> . If a user incorrectly inputs the token order, the function

won't execute successfully. Unlike other similar functions that are friend functions accessible

only through the router_v2  module, it's advisable for this function to also use a friend

function to control its invocation. Additionally, the function claim_rewards()  suffers from

the same issue.

Suggestion:

It is recommended to modify functions to friend functions

Resolution:

This issue has been fixed. The client has changed to a friend function.



29/62

STA-3 Optimization through Consolidating claim_rewards()
and unstake_tokens()  Functions

Severity: Minor

Status: Fixed

Code Location:

sources/stake.move#265

Descriptions:

The functions claim_rewards()  and unstake_tokens()  within the stake  module have

almost identical code. Invoking unstake_tokens(sender, 0)  within the claim_rewards()

function achieves the same effect. Encapsulating the code within the unstake_tokens()

function into a common function for caller use reduces redundant code and enhances

readability and understanding.

Suggestion:

It is recommended to encapsulate identical code into functions to reduce redundancy.

Resolution:

This issue has been fixed. The client has optimized the repetitive code.



30/62

SV2-1 The Constant Product Rule is Compromised, Enabling
Pool Draining

Severity: Critical

Status: Fixed

Code Location:

sources/swap_v2.move#886-939

Descriptions:

The function swap_exact_x_to_y_direct()  is used to swap token X for token Y directly. In this

function, the protocol swaps the user-provided amount, amount_in , for token Y

( coins_y_out ) in the swap function.

    // Get amount after deducting fees and swap it to y// Get amount after deducting fees and swap it to y
    letlet amount_out  amount_out == swap_utils swap_utils::::get_amount_outget_amount_out((amount_inamount_in,, rin rin,, rout rout,, total_fees total_fees));;
    letlet  ((coins_x_outcoins_x_out,, coins_y_out coins_y_out))  == swap swap<<XX,,  YY>>((00,, amount_out amount_out));;

Within the swap function, the update()  function is called, which is responsible for

maintaining the constant product rule x * y = k

        // No need to use u256 when balance_x_adjusted * balance_y_adjusted and// No need to use u256 when balance_x_adjusted * balance_y_adjusted and  
reserve_x_adjusted * reserve_y_adjusted are less than constants::get_max_u128().reserve_x_adjusted * reserve_y_adjusted are less than constants::get_max_u128().
                letlet compare_result  compare_result ==  ifif((
                        balance_x_adjusted balance_x_adjusted >>  00  
                        &&&& reserve_x_adjusted  reserve_x_adjusted >>  00  
                        &&&& constants constants::::get_max_u128get_max_u128(())  // balance_x_adjusted  balance_x_adjusted >> balance_y_adjusted  balance_y_adjusted 
                        &&&& constants constants::::get_max_u128get_max_u128(())  // reserve_x_adjusted  reserve_x_adjusted >> reserve_y_adjusted reserve_y_adjusted
                ))  {{ balance_x_adjusted  balance_x_adjusted ** balance_y_adjusted  balance_y_adjusted >=>= reserve_x_adjusted  reserve_x_adjusted **  
reserve_y_adjusted reserve_y_adjusted }}  elseelse  {{
                        letlet p  p == u256 u256::::mul_u128mul_u128((balance_x_adjustedbalance_x_adjusted,, balance_y_adjusted balance_y_adjusted));;
                        letlet k  k == u256 u256::::mul_u128mul_u128((reserve_x_adjustedreserve_x_adjusted,, reserve_y_adjusted reserve_y_adjusted));;
                        u256u256::::gege((&&pp,,  &&kk))
                }};;
                assertassert!!((compare_resultcompare_result,,  errorserrors::::kk(())));;

                updateupdate((balance_xbalance_x,, balance_y balance_y,, reserves reserves));;

                ((coins_x_outcoins_x_out,, coins_y_out coins_y_out))



31/62

Subsequently, the protocol execute distribute_dex_fees()  and

distribute_fee_on_transfer_fees()  to distribute fees. Treasury Fee

Distribution(distribute_dex_fees()):

The protocol extracts the treasury fee from metadata.balance_y .

Updates the constant product rule: k = x * (y - treasury_fee).

      // treasury // treasury 
                letlet treasury_fee_coins  treasury_fee_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_treasury amount_to_treasury asas u64 u64))));;
                coincoin::::depositdeposit<<YY>>((adminadmin::::get_treasury_addressget_treasury_address(()),, treasury_fee_coins treasury_fee_coins));;
                // update reserves// update reserves
                update_reservesupdate_reserves<<XX,,  YY>>(());;

Transfer Fee Distribution ( distribute_fee_on_transfer_fees() ): If token Y is registered as a fee-

charging token, the protocol: * Extracts amount_to_rewards  from metadata.balance_y

and allocates it to the rewards pool. * Extracts amount_to_team  from metadata.balance_y

and assigns it to metadata.team_balance_y .

Calls update_reserves()  to update the constant product rule: k = x * (y - treasury_fee -

amount_to_rewards - amount_to_team).

  letlet  ((amount_to_liquidityamount_to_liquidity,, amount_to_rewards amount_to_rewards,, amount_to_team amount_to_team))  ==  
calculate_fee_on_transfer_amountscalculate_fee_on_transfer_amounts<<YY>>((amount_inamount_in));;
                        
                        // extract fees// extract fees
                        letlet liquidity_coins  liquidity_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_liquidity amount_to_liquidity asas u64 u64))));;
                        // let rewards_coins = coin::extract<Y>(&mut metadata.balance_y,// let rewards_coins = coin::extract<Y>(&mut metadata.balance_y,  
(amount_to_rewards as u64));(amount_to_rewards as u64));
                        letlet team_coins  team_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  ((amount_to_team amount_to_team asas  
u64u64))));;
                        
                        // distribute fees// distribute fees
                        coincoin::::mergemerge((&&mut metadatamut metadata..balance_ybalance_y,, liquidity_coins liquidity_coins));;
                        // rewards fees must go to rewards pool// rewards fees must go to rewards pool
                        ifif  ((metadatametadata..rewards_feerewards_fee  >>  00))  {{
                                letlet rewards_coins  rewards_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_rewards amount_to_rewards asas u64 u64))));;



32/62

                                stakestake::::distribute_rewardsdistribute_rewards<<XX,,  YY>>((coincoin::::zerozero<<XX>>(()),, rewards_coins rewards_coins));;
                        }};;
                        coincoin::::mergemerge((&&mut metadatamut metadata..team_balance_yteam_balance_y,, team_coins team_coins));;
                        // update reserves// update reserves
                        update_reservesupdate_reserves<<XX,,  YY>>(());;

In this scenario, each exchange from X to Y results in a reduction of the constant product k,

as various fees are subtracted from the reserve of token Y. If a hacker exploits this

mechanism using flash loans to repeatedly swap X for Y, the continuous reduction in k

breaks the x * y = k formula. When the quantity of token Y in the pool becomes extremely

low, indicating a significantly high value for token Y, a hacker can exploit this situation. With a

minimal amount of token Y, the hacker can efficiently exchange for a substantial portion of

token X from the pool.

Suggestion:

It is recommended to deduct fees directly from amount_in  before initiating the token

exchange and fee distribution processes. Furthermore, not update the constant product

formula during fee distribution.

Resolution:

This issue has been fixed. The client followed our advice.



33/62

SV2-2 There is No Slippage Protection During The Distribution
of DEX Fees

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#1565-1590

Descriptions:

The swap_v2.distribute_dex_fees()  function is used in swap functions to distribute DEX fees

and update reserves correspondingly.Within the function, when type_info::type_of<X>() !=

type_info::type_of<APT>() , the protocol invokes the swap_exact_fee_to_apt()  function to

exchange token X for APT, and subsequently transfers the acquired APT to the treasury.

However, during this exchange process, there is an absence of slippage protection.That will

cause a loss of funds because of sandwich attacks.

              ifif  ((type_infotype_info::::type_oftype_of<<XX>>(())  !=!= type_info type_info::::type_oftype_of<<APTAPT>>(())))  {{
                        letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  YY>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                        // extract it from balance x from the metadata// extract it from balance x from the metadata
                        letlet coin_x_out  coin_x_out == coin coin::::extractextract<<XX>>((&&mut metadatamut metadata..balance_xbalance_x,, amount_in amount_in));;
                        // swap it to APT// swap it to APT
                        letlet coin_y_out  coin_y_out == swap_exact_fee_to_apt swap_exact_fee_to_apt<<XX>>((coin_x_outcoin_x_out));;
                        // deposit APT to treasury// deposit APT to treasury
                        // assert!(borrow_global<SwapInfo>(RESOURCE_ACCOUNT).fee_to ==// assert!(borrow_global<SwapInfo>(RESOURCE_ACCOUNT).fee_to ==  
RESOURCE_ACCOUNT, 1);RESOURCE_ACCOUNT, 1);
                        coincoin::::depositdeposit<<APTAPT>>((fee_tofee_to(()),, coin_y_out coin_y_out));;
                        // update reserves// update reserves
                        update_reservesupdate_reserves<<XX,,  YY>>(());;
                }}  

Suggestion:

It is recommended to incorporate a certain level of slippage protection during the exchange

of X for APT.

Resolution:



34/62

This issue has been fixed. The client has updated the implementation logic.



35/62

SV2-3 Infinite Recursion in distribute_dex_fees()  Leading to
Transaction Failure

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#1576

Descriptions:

The function swap_v2.distribute_dex_fees()  aims to calculate and distribute DEX fees based

on the type of input X. In this function, the protocol calls swap_exact_x_to_y_direct()  to

exchange X for APT and then transfers the obtained APT to the treasury. However, within the

swap_exact_x_to_y_direct()  function, the protocol again invokes distribute_dex_fees() . This

recursive calling pattern leads to an infinite loop, resulting in an out-of-gas situation and a

failed transaction.

    ifif  ((type_infotype_info::::type_oftype_of<<XX>>(())  !=!= type_info type_info::::type_oftype_of<<APTAPT>>(())))  {{
                        letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  YY>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                        /// extract it from balance x from the metadata/// extract it from balance x from the metadata
                        letlet coin_x_out  coin_x_out == coin coin::::extractextract<<XX>>((&&mut metadatamut metadata..balance_xbalance_x,, amount_in amount_in));;
                        /// update reserves/// update reserves
                        update_reservesupdate_reserves<<XX,,  YY>>(());;
                        /// swap it to APT/// swap it to APT
                        letlet  ((coins_x_outcoins_x_out,, coin_y_out coin_y_out))  == swap_exact_x_to_y_direct swap_exact_x_to_y_direct<<XX,,  APTAPT>>((coin_x_outcoin_x_out));;
                        coincoin::::destroy_zerodestroy_zero((coins_x_outcoins_x_out));;  /// or others ways to drop `coins_x_out`/// or others ways to drop `coins_x_out`
                        /// deposit APT to treasury/// deposit APT to treasury
                        letlet swap_info  swap_info == borrow_global borrow_global<<SwapInfoSwapInfo>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                        coincoin::::depositdeposit<<APTAPT>>((swap_infoswap_info..fee_tofee_to,, coin_y_out coin_y_out));;
                }}  

Suggestion:

It is recommended to implement a new function to handle the exchange operation, breaking

the cycle and preventing infinite recursion.



36/62

SV2-4 Single-step Ownership Transfer Can be Dangerous

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#662-667

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract.

          publicpublic entry fun  entry fun set_adminset_admin((sendersender::  &&signersigner,,  new_adminnew_admin:: address address)) acquires  acquires SwapInfoSwapInfo  {{
                letlet sender_addr  sender_addr == signer signer::::address_ofaddress_of((sendersender));;
                letlet swap_info  swap_info == borrow_global_mut borrow_global_mut<<SwapInfoSwapInfo>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                assertassert!!((sender_addr sender_addr ==== swap_info swap_info..adminadmin,,  ERROR_NOT_ADMINERROR_NOT_ADMIN));;
                swap_infoswap_info..adminadmin  == new_admin new_admin;;
        }}

Suggestion:

It is recommended to use a two-step ownership transfer pattern, meaning ownership

transfer gets to a "pending" state and the new owner should claim his new rights, otherwise

the old owner still has control of the contract.

Resolution:

This issue has been fixed. The client followed our advice.



37/62

SV2-5 Initializing fee_to  As ZERO_ACCOUNT  May Result In
Rransferring Fees to The Zero Address

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#235-246

Descriptions:

In the init_module  function, initializing fee_to  as ZERO_ACCOUNT  means that if the

set_fee_to  function is called to set a new address for fee reception, swap fees will be

transferred to the zero address.

        fun fun init_moduleinit_module((sendersender::  &&signersigner))  {{
                letlet signer_cap  signer_cap ==  resource_accountresource_account::::retrieve_resource_account_capretrieve_resource_account_cap((sendersender,,  DEVDEV));;
                letlet resource_signer  resource_signer ==  accountaccount::::create_signer_with_capabilitycreate_signer_with_capability((&&signer_capsigner_cap));;
                move_tomove_to((&&resource_signerresource_signer,,  SwapInfoSwapInfo  {{
                        signer_capsigner_cap,,
                        fee_tofee_to::  ZERO_ACCOUNTZERO_ACCOUNT,,
                        adminadmin::  DEFAULT_ADMINDEFAULT_ADMIN,,
                        liquidity_fee_modifierliquidity_fee_modifier::  3030,,    /// 0.3%/// 0.3%
                        treasury_fee_modifiertreasury_fee_modifier::  6060,,      /// 0.6%/// 0.6%
                        pair_createdpair_created::  accountaccount::::new_event_handlenew_event_handle<<PairCreatedEventPairCreatedEvent>>((&&resource_signerresource_signer)),,
                }}));;
        }}

Suggestion:

It is recommended to set fee_to  to a valid address during initialization or call set_fee_to

before performing any swaps.

Resolution:

This issue has been fixed. The client initialized using the treasury address.



38/62

SV2-6 When Calculating Fees for Token Info Y Only, There is An
Incorrect Passing of rewards_coins

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#1705

Descriptions:

The swap_v2.distribute_fee_on_transfer()  function is designed to distribute fees during a

transaction. As shown in the following code�if token info y is registered & token info x not, it

calculates only token info y fees.

elseelse  ifif  ((optionoption::::is_noneis_none<<TokenInfoTokenInfo<<XX>>>>((&&token_info_xtoken_info_x))  &&&&  
!!optionoption::::is_noneis_none<<TokenInfoTokenInfo<<YY>>>>((&&token_info_ytoken_info_y))))  {{
                        letlet extracted_token_info_y  extracted_token_info_y == option option::::extractextract((&&mut token_info_ymut token_info_y));;
                        // calculate the fees // calculate the fees 
                        letlet  ((amount_to_liquidityamount_to_liquidity,, amount_to_rewards amount_to_rewards,, amount_to_team amount_to_team))  ==  
calculate_fee_on_transfer_amountscalculate_fee_on_transfer_amounts<<YY>>((extracted_token_info_yextracted_token_info_y,, amount_in amount_in));;
                        
                        // extract fees// extract fees
                        letlet liquidity_coins  liquidity_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_liquidity amount_to_liquidity asas u64 u64))));;
                        // let rewards_coins = coin::extract<Y>(&mut metadata.balance_y,// let rewards_coins = coin::extract<Y>(&mut metadata.balance_y,  
(amount_to_rewards as u64));(amount_to_rewards as u64));
                        letlet team_coins  team_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  ((amount_to_team amount_to_team asas  
u64u64))));;
                        
                        // distribute fees// distribute fees
                        coincoin::::mergemerge((&&mut metadatamut metadata..balance_ybalance_y,, liquidity_coins liquidity_coins));;
                        // rewards fees must go to rewards pool// rewards fees must go to rewards pool
                        ifif  ((metadatametadata..rewards_feerewards_fee  >>  00))  {{
                                letlet rewards_pool  rewards_pool == borrow_global_mut borrow_global_mut<<TokenPairRewardsPoolTokenPairRewardsPool<<XX,,  YY>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                                letlet rewards_coins  rewards_coins == coin coin::::extractextract((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_rewards amount_to_rewards asas u64 u64))));;

                                update_poolupdate_pool<<XX,,YY>>((rewards_poolrewards_pool,,  coincoin::::valuevalue((&&rewards_coinsrewards_coins)),,  00));;



39/62

                                coincoin::::mergemerge((&&mut rewards_poolmut rewards_pool..balance_ybalance_y,, rewards_coins rewards_coins));;
                        }};;
                        coincoin::::mergemerge((&&mut metadatamut metadata..team_balance_yteam_balance_y,, team_coins team_coins));;
                        // update reserves// update reserves
                        update_reservesupdate_reserves<<XX,,  YY>>(());;
                }}

However, it extracts rewards_coins  from metadata.balance_y , but when calling the

update_pool()  function, it passes these rewards coins to reward_x ,causing confusion in

calculation logic.

Suggestion:

It is recommended to pass rewards_coins  to reward_y  when calling the update_pool()

function.

update_poolupdate_pool<<XX,,YY>>((rewards_poolrewards_pool,,00  ,,  coincoin::::valuevalue((&&rewards_coinsrewards_coins))));;

Resolution:

This issue has been fixed. The client has changed the implementation logic.



40/62

SV2-7 Centralization Risk

Severity: Major

Status: Acknowledged

Code Location:

sources/swap_v2.move

Descriptions:

Admin

Admin can offer admin previliges through the offer_admin_previliges()  function.

Admin can offer treasury previliges through the offer_treasury_previliges()  function.

Admin can cancel previliges through the cancel_admin_previliges()  function.

Admin can claim previliges through the claim_admin_previliges()  function.

Admin can set dex liquidity fee through the set_dex_liquidity_fee()  function.

Admin can set dex treasury fee through the set_dex_treasury_fee()  function.

Admin can updates dex fee given a tier through the update_fee_tier()  function.

Token Owner

The owner of token can initialize individual token fees through

the  initialize_fee_on_transfer()  function.

The owner of token can set liquidity fee through the  set_liquidity_fee()  function.

The owner of token can set reward fee through the  set_rewards_fee()  function.

The owner of token can set team fee through the  set_team_fee()  function.

The owner of token can add fee on transfer to a pair through

the  register_fee_on_transfer_in_a_pair()  function.

The owner of token can claim team fees in a given pair through

the  claim_accumulated_team_fee()  function.

The owner of token can toggle rewards fee through the  toggle_rewards_fee()  function.



41/62

The owner of token can toggle all individual token fees through the  toggle_all_fees()

function.

The owner of token can toggle liquidity fee through the  toggle_liquidity_fee()  function.

The owner of token can toggle team fee through the  toggle_team_fee()  function.

Suggestion:

It is recommended to take some measures to mitigate centralization risk.

Resolution:

The client used multisig to mitigate this issue.



42/62

SV2-8 Token Extraction Mismatch in Fee Distribution Logic

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#1557-1570

Descriptions:

The function swap_v2.distribute_dex_fees()  is used to ensure proper distribution of DEX

fees, regardless of the input token. In the case where type_info::type_of<X>() !=

type_info::type_of<APT>() , the line coin_x_out = coin::extract<X>(&mut metadata.balance_x,

amount_in)  extracts the token amount from metadata.balance_x  using the user-input

amount_in . However, it seems that the intended behavior might be to use

amount_to_liquidity + amount_to_treasury  instead of amount_in .

  letlet  ((amount_to_liquidityamount_to_liquidity,, amount_to_treasury amount_to_treasury))  == calculate_dex_fees_amounts calculate_dex_fees_amounts<<XX>>
((amount_inamount_in));;
                // if X is not APT, swap the amounts into APT// if X is not APT, swap the amounts into APT
                ifif  ((type_infotype_info::::type_oftype_of<<XX>>(())  !=!= type_info type_info::::type_oftype_of<<APTAPT>>(())))  {{
                        letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  YY>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                        // extract it from balance x from the metadata// extract it from balance x from the metadata
                        letlet coin_x_out  coin_x_out == coin coin::::extractextract<<XX>>((&&mut metadatamut metadata..balance_xbalance_x,, amount_in amount_in));;
                        // swap it to APT// swap it to APT
                        letlet coin_y_out  coin_y_out == swap_exact_fee_to_apt swap_exact_fee_to_apt<<XX>>((coin_x_outcoin_x_out));;
                        // deposit APT to treasury// deposit APT to treasury
                        // assert!(borrow_global<SwapInfo>(RESOURCE_ACCOUNT).fee_to ==// assert!(borrow_global<SwapInfo>(RESOURCE_ACCOUNT).fee_to ==  
RESOURCE_ACCOUNT, 1);RESOURCE_ACCOUNT, 1);
                        coincoin::::depositdeposit<<APTAPT>>((fee_tofee_to(()),, coin_y_out coin_y_out));;
                        // update reserves// update reserves
                        update_reservesupdate_reserves<<XX,,  YY>>(());;
                }}

If amount_in  is used in this context, it means the function might be extracting a token

amount for swapping that doesn't match the calculated fees ( amount_to_liquidity +

amount_to_treasury ), potentially resulting in an incorrect fee distribution. This could lead to



43/62

fee_to()  receiving more fees than expected, as it would be based on the user-provided

amount rather than the calculated fees.

Suggestion:

It is recommended to use the total calculated fees ( amount_to_liquidity +

amount_to_treasury ) when extracting tokens for swapping.

Resolution:

This issue has been fixed. The client has updated the implementation logic.



44/62

SV2-9 Incorrect Fee Handling in swap_with_no_fee()

Severity: Major

Status: Fixed

Code Location:

sources/swap_v2.move#1597-1645

Descriptions:

In the swap_with_no_fee()  function, the protocol extracts amounts from

TokenPairMetadata<X, APT>  based on the values of the parameters amount_x_out  and

amount_y_out .

  fun swap_with_no_feefun swap_with_no_fee<<XX,,  APTAPT>>((
                amount_x_outamount_x_out:: u64 u64,,
                amount_y_outamount_y_out:: u64 u64
        ))::  ((CoinCoin<<XX>>,,  CoinCoin<<APTAPT>>)) acquires  acquires TokenPairReserveTokenPairReserve,,  TokenPairMetadataTokenPairMetadata  {{
                assertassert!!((amount_x_out amount_x_out >>  00  |||| amount_y_out  amount_y_out >>  00,,  
ERROR_INSUFFICIENT_OUTPUT_AMOUNTERROR_INSUFFICIENT_OUTPUT_AMOUNT));;

                letlet reserves  reserves == borrow_global_mut borrow_global_mut<<TokenPairReserveTokenPairReserve<<XX,,  APTAPT>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                assertassert!!((amount_x_out amount_x_out << reserves reserves..reserve_xreserve_x  &&&& amount_y_out  amount_y_out << reserves reserves..reserve_yreserve_y,,  
ERROR_INSUFFICIENT_LIQUIDITYERROR_INSUFFICIENT_LIQUIDITY));;

                letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  APTAPT>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;

                letlet coins_x_out  coins_x_out == coin coin::::zerozero<<XX>>(());;
                letlet coins_y_out  coins_y_out == coin coin::::zerozero<<APTAPT>>(());;
                ifif  ((amount_x_out amount_x_out >>  00)) coin coin::::mergemerge((&&mut coins_x_outmut coins_x_out,,  extract_xextract_x((amount_x_outamount_x_out,,  
metadatametadata))));;
                ifif  ((amount_y_out amount_y_out >>  00)) coin coin::::mergemerge((&&mut coins_y_outmut coins_y_out,,  extract_yextract_y((amount_y_outamount_y_out,,  
metadatametadata))));;
                letlet  ((balance_xbalance_x,, balance_y balance_y))  == token_balances token_balances<<XX,,  APTAPT>>(());;

However, when this function is called from swap_exact_fee_to_apt() , it is passed the

arguments 0 and amount_in  x.



45/62

  fun swap_exact_fee_to_aptfun swap_exact_fee_to_apt<<XX>>((coins_incoins_in::  CoinCoin<<XX>>))::  CoinCoin<<APTAPT>> acquires  acquires 
TokenPairReserveTokenPairReserve,,  TokenPairMetadataTokenPairMetadata  {{
                // Grab token pair metadata// Grab token pair metadata
                letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  APTAPT>>>>
((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;  
                // get the value of coins in u64// get the value of coins in u64
                letlet amount_in  amount_in == coin coin::::valuevalue<<XX>>((&&coins_incoins_in));;

                // deposit amount_in x into balance x// deposit amount_in x into balance x
                coincoin::::mergemerge((&&mut metadatamut metadata..balance_xbalance_x,, coins_in coins_in));;

                // Get amount y// Get amount y
                letlet  ((coins_x_outcoins_x_out,, coins_y_out coins_y_out))  == swap_with_no_fee swap_with_no_fee<<XX,,  APTAPT>>((00,, amount_in amount_in));;
                coincoin::::destroy_zerodestroy_zero((coins_x_outcoins_x_out));;  // or others ways to drop `coins_x_out`// or others ways to drop `coins_x_out`

                coins_y_outcoins_y_out
        }}

This implies that the protocol attempts to extract an amount of APT tokens corresponding

to the fee in token X, rather than converting token X to APT. This results in a loss of funds for

the protocol.

Suggestion:

It is recommended to convert token X into APT and then transfer it to the fee_to  address.

Resolution:

This issue has been fixed. The client has deleted this function.



46/62

SV2-10 Update the Reserves within the swap()  Function

Severity: Medium

Status: Fixed

Code Location:

sources/swap_v2.move#498

Descriptions:

In the swap_exact_x_to_y_direct()  function, the protocol swaps token X to token Y and

subsequently calls update_reserves()  to update the constant product.

        publicpublic((friendfriend)) fun swap_exact_x_to_y_direct fun swap_exact_x_to_y_direct<<XX,,  YY>>((
                coins_incoins_in:: coin coin::::CoinCoin<<XX>>
        ))::  ((coincoin::::CoinCoin<<XX>>,,  coincoin::::CoinCoin<<YY>>)) acquires  acquires TokenPairReserveTokenPairReserve,,  TokenPairMetadataTokenPairMetadata  {{
                letlet amount_in  amount_in == coin coin::::valuevalue<<XX>>((&&coins_incoins_in));;
                deposit_xdeposit_x<<XX,,  YY>>((coins_incoins_in));;
                letlet  ((rinrin,, rout rout,, _ _))  == token_reserves token_reserves<<XX,,  YY>>(());;
                letlet amount_out  amount_out == swap_utils_v2 swap_utils_v2::::get_amount_outget_amount_out((amount_inamount_in,, rin rin,, rout rout));;
                letlet  ((coins_x_outcoins_x_out,, coins_y_out coins_y_out))  == swap swap<<XX,,  YY>>((00,, amount_out amount_out));;
                // update reserves// update reserves
                update_reservesupdate_reserves<<XX,,  YY>>(());;
                assertassert!!((coincoin::::valuevalue<<XX>>((&&coins_x_outcoins_x_out))  ====  00,,  errorserrors::::insufficient_output_amountinsufficient_output_amount(())));;
                ((coins_x_outcoins_x_out,, coins_y_out coins_y_out))
        }}

However, a best practice, as exemplified in the PancakeSwap code, is to call the update()

function within the swap()  function to handle the updates. This ensures that the reserves

are consistently and efficiently updated during the swapping process.

Suggestion:

It is recommended to call the update()  function within the swap()  function to update the

constant product.

Resolution:

This issue has been fixed. The client followed our advice

https://github.com/pancakeswap/pancake-contracts-move/blob/main/pancake-swap/sources/swap/swap.move#L571C9-L571C48


47/62

SV2-11 Update magnified_dividends_per_share  Values When
staked_tokens  Reaches Zero

Severity: Medium

Status: Fixed

Code Location:

sources/swap_v2.move#552-555

Descriptions:

In the swap_v2.unstake_tokens()  function, the protocol transfers staked tokens to the user

and subsequently deducts the corresponding amount from pool_info.staked_tokens .

However, a issue arises when pool_info.staked_tokens  reaches zero,the protocol fails to

update pool_info.magnified_dividends_per_share_x  and

pool_info.magnified_dividends_per_share_y . This inconsistency results in a mismatch

between the current state of pool_info  and its initialized state.

        // Tranfer staked tokens out// Tranfer staked tokens out
                        ifif  ((amount amount >>  00))  {{
                                transfer_outtransfer_out<<XX>>((&&mut user_infomut user_info..staked_tokensstaked_tokens,, sender sender,, amount amount));;
                                pool_infopool_info..staked_tokensstaked_tokens  == pool_info pool_info..staked_tokensstaked_tokens  -- amount amount;;
                        }};;

Suggestion:

It is recommend to update pool_info.magnified_dividends_per_share_x  and

pool_info.magnified_dividends_per_share_y  to their initial values when

pool_info.staked_tokens  becomes zero.

Resolution:

This issue has been fixed. The protocol now initializes the corresponding value when staked

tokens are 0.



48/62

SV2-12 The FeeChangeEvent Structure is Not Being Utilized

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#222

Descriptions:

The FeeChangeEvent  structure is intended to monitor changes in various fees, but it's not

being utilized within the contract. As a result, there's an inability to promptly track changes

in fees.

Suggestion:

It is recommended that when updating fees, utilize FeeChangeEvent  to trigger the event.

Resolution:

This issue has been fixed. The client has been removed from the code; fee change is now

being tracked in admin.move  and fee_on_transfer.move .



49/62

SV2-13 Redundant Operations in the Code

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#821-826;

sources/swap_v2.move#792-793

Descriptions:

In the function swap_v2.distribute_dex_fees() , it is unnecessary for the protocol to extract

liquidity_fee_coins  from metadata.balance_y and then immediately merge it back into

metadata.balance_y .

                // liquidity// liquidity
                letlet liquidity_fee_coins  liquidity_fee_coins == coin coin::::extractextract<<YY>>((&&mut metadatamut metadata..balance_ybalance_y,,  
((amount_to_liquidity amount_to_liquidity asas u64 u64))));;
                coincoin::::mergemerge((&&mut metadatamut metadata..balance_ybalance_y,, liquidity_fee_coins liquidity_fee_coins));;

In the distribute_fee_on_transfer_fees()  function, there is a similar issue with the handling of

liquidity_coins .

Suggestion:

It is recommended to remove the unnecessary extraction and merging of

liquidity_fee_coins  in the distribute_dex_fees()  function.

Resolution:

This issue has been fixed. The client removed the redundant code operations.



50/62

SV2-14 Accessibility Contradiction in the Utilization of
swap_exact_x_to_y_direct()  Function

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#516,602

Descriptions:

The function swap_exact_x_to_y_direct()  is a friend function, yet it's only called within the

current module and not in any other modules. Therefore, it behaves as a private function,

which contradicts the intended access permissions for this function.The function

swap_exact_y_to_x_direct()  and update_pool()  also suffers from the same issue.

Suggestion:

It is recommended to modify this function to be a private function.

Resolution:

This issue has been fixed. The client has been modified to a private function.



51/62

SV2-15 The Necessity of Controlling Return Value Order in the
token_reserves()  Function

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#653

Descriptions:

The function token_reserves()  adjusts the order of returned values by sorting currencies,

which might not be necessary. As the order has already been adjusted before calling this

function within the current contract, the if statement is executed every time. To prevent

confusion, we believe that the control over the sequence should occur when receiving the

return values of this function, rather than within the current function. We also compared

this to PancakeSwap's code, which similarly does not control the sequence within the

current function.

Suggestion:

It is recommended to consistency with PancakeSwap, Unless Specifically Designed for Other

Functionalities.

Resolution:

This issue has been fixed. The client followed the suggestion and canceled the reordering of

the return values.



52/62

SV2-16 Unused Constant

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#49

Descriptions:

The main consequence of the Unused Constants defect is the increase in gas costs during

module deployment, leading to gas wastage.

        constconst  ERROR_ONLY_ADMINERROR_ONLY_ADMIN::  u64u64  ==  00;;  
        constconst  ERROR_NOT_CREATORERROR_NOT_CREATOR::  u64u64  ==  22;;
        constconst  ERROR_TOKENS_NOT_SORTEDERROR_TOKENS_NOT_SORTED::  u64u64  ==  99;;
        constconst  ERROR_X_NOT_REGISTEREDERROR_X_NOT_REGISTERED::  u64u64  ==  1616;;
        constconst  ERROR_Y_NOT_REGISTEREDERROR_Y_NOT_REGISTERED::  u64u64  ==  1616;;
        constconst  ERROR_NOT_FEE_TOERROR_NOT_FEE_TO::  u64u64  ==  1818;;
        constconst  ERROR_NOT_EQUAL_EXACT_AMOUNTERROR_NOT_EQUAL_EXACT_AMOUNT::  u64u64  ==  1919;;
        constconst  ERROR_NOT_RESOURCE_ACCOUNTERROR_NOT_RESOURCE_ACCOUNT::  u64u64  ==  2020;;
        constconst  ERROR_EXCESSIVE_FEEERROR_EXCESSIVE_FEE::  u64u64  ==  2222;;
        constconst  ERROR_MUST_BE_INFERIOR_TO_TWENTYERROR_MUST_BE_INFERIOR_TO_TWENTY::  u64u64  ==  2424;;
        constconst  ERROR_NO_REWARDSERROR_NO_REWARDS::  u64u64  ==  2828;;

Suggestion:

It is recommended to remove unused constants or utilize them in the code.

Resolution:

This issue has been fixed. The client has already used these error constants.



53/62

SV2-17 Code Redundancy in The
toggle_individual_token_liquidity_fee()  Function

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#743-759

Descriptions:

The code below has redundant blocks of code for both branches where

type_info::type_of<CoinType>() == type_info::type_of<X>()  and type_info::type_of<CoinType>

() == type_info::type_of<Y>() . Regardless of which branch is taken, the same logic is executed.

This redundancy could be streamlined to improve code readability and maintainability.

  letlet metadata  metadata == borrow_global_mut borrow_global_mut<<TokenPairMetadataTokenPairMetadata<<XX,,  YY>>>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                letlet token_info  token_info == borrow_global borrow_global<<TokenInfoTokenInfo<<CoinTypeCoinType>>>>((signersigner::::address_ofaddress_of((sendersender))));;
                // if cointype = x// if cointype = x
                ifif  ((type_infotype_info::::type_oftype_of<<CoinTypeCoinType>>(())  ==== type_info type_info::::type_oftype_of<<XX>>(())))  {{
                        // if activate = true// if activate = true
                        ifif  ((activate activate ====  truetrue))  {{
                                metadatametadata..liquidity_feeliquidity_fee  == metadata metadata..liquidity_feeliquidity_fee  ++  
token_infotoken_info..liquidity_fee_modifierliquidity_fee_modifier;;
                        // if activate = false// if activate = false
                        }}  elseelse  {{
                                metadatametadata..liquidity_feeliquidity_fee  == metadata metadata..liquidity_feeliquidity_fee  --  
token_infotoken_info..liquidity_fee_modifierliquidity_fee_modifier;;
                        }}
                // if cointype = y// if cointype = y
                }}  elseelse  ifif  ((type_infotype_info::::type_oftype_of<<CoinTypeCoinType>>(())  ==== type_info type_info::::type_oftype_of<<YY>>(())))  {{
                        // if activate = true// if activate = true
                        ifif  ((activate activate ====  truetrue))  {{
                                metadatametadata..liquidity_feeliquidity_fee  == metadata metadata..liquidity_feeliquidity_fee  ++  
token_infotoken_info..liquidity_fee_modifierliquidity_fee_modifier;;
                        // if activate = false// if activate = false
                        }}  elseelse  {{
                                metadatametadata..liquidity_feeliquidity_fee  == metadata metadata..liquidity_feeliquidity_fee  --  
token_infotoken_info..liquidity_fee_modifierliquidity_fee_modifier;;



54/62

                        }}
                }}  elseelse  {{ assert assert!!((falsefalse,,  11));;  }}

Suggestion:

It is recommend to consolidate the common logic for both branches and eliminate the need

for duplicate code.

Resolution:

This issue has been fixed. The client has removed this function.



55/62

SV2-18 Residual Coin Unable to be Extracted

Severity: Minor

Status: Acknowledged

Code Location:

sources/swap_v2.move#518-559

Descriptions:

Due to precision loss, there is a persistent issue of residual coins in the

RewardsPoolUserInfo  that cannot be extracted. Every time the update_pool  function is

called during a transaction to distribute rewards from the rewards_pool  to users staking

and to update acc_token_per_share , the value of acc_token_per_share  is rounded down

due to precision loss. As a result, users are consistently unable to claim the full

rewards_pool . However, the rewards_pool  continues to accumulate in the

RewardsPoolUserInfo . This means that with each transaction, if there is precision loss, the

unrecoverable portion of the rewards_pool accumulates  in the RewardsPoolUserInfo ,

making it unclaimable.

ifif  ((reward_x reward_x >>  00))  {{
                        // acc_token_per_share = acc_token_per_share + (reward * precision_factor) /// acc_token_per_share = acc_token_per_share + (reward * precision_factor) /  
total_stake;total_stake;
                        x_token_per_share_u256 x_token_per_share_u256 ==  u256u256::::addadd((
                                u256u256::::from_u128from_u128((last_magnified_dividends_per_share_xlast_magnified_dividends_per_share_x)),,
                                u256u256::::divdiv((
                                        u256u256::::mulmul((u256u256::::from_u64from_u64((reward_xreward_x)),,  u256u256::::from_u128from_u128((precision_factorprecision_factor)))),,
                                        u256u256::::from_u64from_u64((total_staked_tokentotal_staked_token))
                                ))
                        ));;

Suggestion:

It is recommended to add a feature to claim the remaining rewards.



56/62

SV2-19 Redundant Pair Creation Check in init_rewards_pool()
Function

Severity: Minor

Status: Fixed

Code Location:

sources/swap_v2.move#282

Descriptions:

The purpose of the function router_v2.create_rewards_pool ()  is to create a rewards pool

for a pair of tokens (X, Y or Y, X).

  publicpublic entry fun create_rewards_pool entry fun create_rewards_pool<<XX,,  YY>>((
                sendersender::  &&signersigner,,
                is_x_stakedis_x_staked:: bool bool
        ))  {{
                assertassert!!((((((swap_v2swap_v2::::is_pair_createdis_pair_created<<XX,,  YY>>(())  |||| swap_v2 swap_v2::::is_pair_createdis_pair_created<<YY,,  XX>>(()))))),,  
E_PAIR_NOT_CREATEDE_PAIR_NOT_CREATED));;
                assertassert!!((!!((((swap_v2swap_v2::::is_pool_createdis_pool_created<<XX,,  YY>>(())  |||| swap_v2 swap_v2::::is_pool_createdis_pool_created<<YY,,  XX>>(()))))),,  
E_POOL_EXISTSE_POOL_EXISTS));;

                ifif  ((swap_utilsswap_utils::::sort_token_typesort_token_type<<XX,,  YY>>(())))  {{
                        swap_v2swap_v2::::init_rewards_poolinit_rewards_pool<<XX,,  YY>>((sendersender,, is_x_staked is_x_staked));;
                }}  elseelse  {{
                        swap_v2swap_v2::::init_rewards_poolinit_rewards_pool<<YY,,  XX>>((sendersender,,  !!is_x_stakedis_x_staked));;
                }}
        }}

After checking whether a pair of tokens (X, Y or Y, X) has been created using

swap_v2.is_pair_created()  and raising an error (E_PAIR_NOT_CREATED), the code proceeds

to call swap_v2.init_rewards_pool() . However, within the init_rewards_pool()  function, there

is an additional check for the creation of the pair. This redundant pair creation check inside

the init_rewards_pool  function is unnecessary and duplicates the validation already

performed in the calling function.



57/62

    publicpublic((friendfriend)) fun init_rewards_pool fun init_rewards_pool<<XX,,  YY>>((
                sendersender::  &&signersigner,,
                is_x_stakedis_x_staked:: bool bool
        )) acquires  acquires SwapInfoSwapInfo  {{
                assertassert!!((is_pair_createdis_pair_created<<XX,,  YY>>(()),,  ERROR_PAIR_NOT_CREATEDERROR_PAIR_NOT_CREATED));;
                assertassert!!((!!existsexists<<TokenPairRewardsPoolTokenPairRewardsPool<<XX,,  YY>>>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT)),,  
ERROR_ALREADY_INITIALIZEDERROR_ALREADY_INITIALIZED));;

                letlet sender_addr  sender_addr == signer signer::::address_ofaddress_of((sendersender));;

Suggestion:

It is recommended to remove the redundant pair creation check inside the

init_rewards_pool()  function.

Resolution:

This issue has been fixed. The client followed our suggestions.



58/62

SV2-20 The Conventions for Using Boolean Values in
Conditional Statements

Severity: Informational

Status: Fixed

Code Location:

sources/swap_v2.move#263,264,745,754,777,786,809,818,1271,1287,1306,1323,1340

Descriptions:

The code contains numerous conditional statements similar to the following:

assert!assert!((xxx xxx ====  truetrue,,  11));;

ifif  ((xxx xxx ====  truetrue))  {{
......
}}

Boolean values themselves represent true or false, so in general, there's no need to

compare Boolean values explicitly to true.

Suggestion:

It is recommended to update these conditional statements to align with standard

development practices.

Resolution:

This issue has been fixed. The client has modified it according to the suggestion.



59/62

SV2-21 Function Name Typo

Severity: Informational

Status: Fixed

Code Location:

sources/swap_v2.move#1277

Descriptions:

The function swap_v2.ser_dex_treasury_fee()  is used to set dex treasury fee.

  publicpublic((friendfriend)) fun  fun ser_dex_treasury_feeser_dex_treasury_fee((
                sendersender::  &&signersigner,,
                new_feenew_fee:: u128 u128
        )) acquires  acquires SwapInfoSwapInfo  {{
                letlet swap_info  swap_info == borrow_global_mut borrow_global_mut<<SwapInfoSwapInfo>>((RESOURCE_ACCOUNTRESOURCE_ACCOUNT));;
                // assert sender is admin// assert sender is admin
                assertassert!!((signersigner::::address_ofaddress_of((sendersender))  ==== swap_info swap_info..adminadmin,,  ERROR_NOT_ADMINERROR_NOT_ADMIN));;
                // assert new fee is not equal to the existing fee// assert new fee is not equal to the existing fee
                assertassert!!((new_fee new_fee !=!= swap_info swap_info..treasury_fee_modifiertreasury_fee_modifier,,  11));;
                // assert the newer total fee is less than the threshold// assert the newer total fee is less than the threshold
                assertassert!!((does_not_exceed_dex_fee_thresholddoes_not_exceed_dex_fee_threshold((new_fee new_fee ++  
swap_infoswap_info..liquidity_fee_modifierliquidity_fee_modifier))  ====  truetrue,,  11));;
                // update the fee// update the fee
                swap_infoswap_info..treasury_fee_modifiertreasury_fee_modifier  == new_fee new_fee;;
        }}

The function name is incorrectly written as ser_dex_treasury_fee()  and should be corrected

to set_dex_treasury_fee() .

Suggestion:

It is recommended to change ser_dex_treasury_fee()  to set_dex_treasury_fee() .

Resolution:

This issue has been fixed. The client followed our advice.



60/62

SV2-22 The toggle_individual_token_rewards_fee()  Function's
Functionality is Inconsistent With Its Comment

Severity: Informational

Status: Fixed

Code Location:

sources/swap_v2.move#795

Descriptions:

The function swap_v2.toggle_individual_token_rewards_fee()  is used to toggle the reward

fee.

  // toggle liquidity fee// toggle liquidity fee
        publicpublic entry fun toggle_individual_token_rewards_fee entry fun toggle_individual_token_rewards_fee<<CoinTypeCoinType,,  XX,,  YY>>((
                sendersender::  &&signersigner,,
                activateactivate:: bool bool,,
        )) acquires  acquires TokenInfoTokenInfo,,  TokenPairMetadataTokenPairMetadata  {{
                // assert sender is token owner// assert sender is token owner
                assertassert!!((is_token_owneris_token_owner<<CoinTypeCoinType>>((sendersender)),,  ERROR_NOT_OWNERERROR_NOT_OWNER));;
                // TODO: assert TokenInfo<CoinType> is registered in the pair// TODO: assert TokenInfo<CoinType> is registered in the pair

However, the accompanying comment misrepresents its purpose by stating "toggle liquidity

fee" creating a discrepancy between the function's actual behavior and the provided

comment.

Suggestion:

It is recommended to update the comment to "toggle reward fee".

Resolution:

This issue has been fixed. The client has deleted this function.



61/62

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.



62/62

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.


	190_page1.pdf
	190_page2.pdf

