
Audit Report

contact@movebit.xyz https://twitter.com/movebit_

Amnis

Thu Mar 14 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_


1/12

Amnis Audit Report

1 Executive Summary

1.1 Project Information

Description A Pioneering Liquidity Staking on Aptos

Type Staking

Auditors MoveBit

Timeline Wed Jan 31 2024 - Thu Mar 14 2024

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/amnis-finance/amnis-contract
https://github.com/tony001242/amnis-contract

Commits https://github.com/amnis-finance/amnis-contract:

08239f04ed57a9642b366f36e5184e727acc3afe

https://github.com/tony001242/amnis-contract:

7eb9708269cd298867e668018dbc46362f05e34b

https://github.com/amnis-finance/amnis-contract
https://github.com/tony001242/amnis-contract
https://github.com/amnis-finance/amnis-contract/tree/08239f04ed57a9642b366f36e5184e727acc3afe
https://github.com/tony001242/amnis-contract/tree/7eb9708269cd298867e668018dbc46362f05e34b


2/12

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml 9dbd0500e959d81c973d7fc9c298
ed0b0a2cd891

AGO sources/aptos_governance.move fb2b3b8459aa902196eb4ea65ec8
729ec6668698

ATO sources/amapt_token.move 23e6c6090bac4a1cbc139c6871145
238cb4e76cd

STO sources/stapt_token.move 87e606d24754a50e8c13c34d5e9ef
0c87fe9978a

WIT sources/withdrawal.move 0de818ee1a794f2c2724e1cf76153
e014ebaf290

PMA sources/package_manager.move c4747144fa3297384b2a3ac575043
974dc82241b

ROU sources/router.move e9d2d9f6852d02796c7a1ba55900
e43e0bf44b76

DMA sources/delegation_manager.move 1179adbc9394dc668dabeff70f76e
708cbd182c3

PEG sources/pegging.move af46ac331cbff9c844baf0d9dee0b5
1c7ed95d9b

TRE sources/treasury.move 8f14890b9abd47258b0233edfc784
7e7ff70fc57

GOV sources/governance.move 4b28bf11d85e49859a2eefae307ae
14de7136af0



3/12

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 3 0

Informational 0 0 0

Minor 2 2 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0



4/12

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type



5/12

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.



6/12

2 Summary

This report has been commissioned by Amnis to identify any potential issues and
vulnerabilities in the source code of the Amnis smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

PEG-1 The operator  can Evade The Fees
When Loaning Assets

Medium Fixed

PEG-2 Underutilized Constant
EID_INVALID  in Pegging  Module

Minor Fixed

PEG-3 Contract Configuration and Loan
Validation Improvements

Minor Fixed



7/12

3 Participant Process

Here are the relevant actors with their respective abilities within the Amnis Smart Contract :
Gov

Gov can set the operator through set_pegging_operator() .

Treasury operator

Treasury operator can update treasury_incentives  through

update_reward_incentives() .

User

Users can cancel withdrawals through cancel_withdraw_multi() .

operator

The operator can update the maximum reserve amount through config_pegging() .

The operator can conduct flash loans through loan_apt()  and repay_amapt() .



8/12

4 Findings

PEG-1 The operator  can Evade The Fees When Loaning Assets

Severity: Medium

Status: Fixed

Code Location:

sources/pegging.move#77

Descriptions:

The function pegging.loan_apt()  allows the operator to withdraw funds from the protocol,

but a certain fee is required when returning the funds. The fee calculation is as follows:

math64math64::::mul_divmul_div((amountamount,,  peggingpegging(())..loan_feeloan_fee,,  BPS_MAXBPS_MAX))

According to the protocol configuration, we found that loan_fee is 10, and BPS_MAX  is

10000. When amount * 10 < 10000 , users will not have to pay any fees. Therefore, the

operator can repeatedly borrow 999 to avoid the fees.

Suggestion:

It is recommended to set a minimum loan amount or to check if the fee is 0, in which case

borrowing assets should not be allowed.

Resolution:

This issue has been fixed by adding a check for fee > 0  in the protocol.



9/12

PEG-2 Underutilized Constant EID_INVALID  in Pegging
Module

Severity: Minor

Status: Fixed

Code Location:

sources/pegging.move#19

Descriptions:

The constant EID_INVALID  in the pegging  module is not utilized, potentially impacting

code readability and causing unnecessary gas consumption.

        constconst  EID_INVALIDEID_INVALID::  u64u64  ==  33;;

Suggestion:

It is recommended to remove unused constants.

Resolution:

This issue has been fixed. The client has adopted our suggestions.



10/12

PEG-3 Contract Configuration and Loan Validation
Improvements

Severity: Minor

Status: Fixed

Code Location:

sources/pegging.move#53,75

Descriptions:

Currently, there is no place in the contract to modify loan_fee . Should the ability to update

loan_fee  be allowed in the config_pegging()  function? Additionally, the loan_apt()  function

checks that the treasury balance must be greater than the loan amount. Should it also allow

equality, as a borrower might acquire the entire balance before invoking this function? The

current validation may lead to confusion for borrowers attempting to loan their entire

balance.

Suggestion:

It is recommended to improve based on the description.

Resolution:

This issue has been fixed. The client has allowed modification of loan_fee  in

config_pegging()  and has altered the validation conditions in loan_apt() .



11/12

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.



12/12

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.


	244_page1.pdf
	244_page2.pdf

