
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Ferra DLMM

Thu Sep 25 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Ferra DLMM Audit Report

1 Executive Summary

1.1 Project Information

Description This project is the DEX, focusing on liquidity layer
infrastructure.
Currently, there are two parts: DLMM and CLMM
- DLMM is the Dynamic Liquidity Market Maker, the first type
on SUI. You can refer to Trader Joe's Liquidity Order Book, or
Meteora's DLMM on Solana for reference

Type DEX

Auditors Alex,PeiQi

Timeline Wed Jun 18 2025 - Thu Sep 25 2025

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Ferra-Labs/ferra-dlmm

Commits 0df7c1a9a6630127b0e11dc2a3d499a73a32cf24
2eea25cdbffd3bcbad6b817c31e13fa5370fe536
b66b85b8950d2a8c1537b2efc2bef22a0982c7b0
e5e7aee0fe161e048c09c0a88d51b44e7b1330fb
b71c8215831610ecd5d97d82bb43c4f8b00266c1
d8db98838551768d1be6477c7deff5c48dda3ca9

1/68

https://github.com/Ferra-Labs/ferra-dlmm
https://github.com/Ferra-Labs/ferra-dlmm/tree/0df7c1a9a6630127b0e11dc2a3d499a73a32cf24
https://github.com/Ferra-Labs/ferra-dlmm/tree/2eea25cdbffd3bcbad6b817c31e13fa5370fe536
https://github.com/Ferra-Labs/ferra-dlmm/tree/b66b85b8950d2a8c1537b2efc2bef22a0982c7b0
https://github.com/Ferra-Labs/ferra-dlmm/tree/e5e7aee0fe161e048c09c0a88d51b44e7b1330fb
https://github.com/Ferra-Labs/ferra-dlmm/tree/b71c8215831610ecd5d97d82bb43c4f8b00266c1
https://github.com/Ferra-Labs/ferra-dlmm/tree/d8db98838551768d1be6477c7deff5c48dda3ca9

1c08a51caadede0109f528319e61829703d4e7a7
3566099f5e84c5766e73988866919fd26fe59090
cd692f9926cb963ec53971d9914dabe0e81eeaea
de095b82f885cbc7d86a3197d3a6d92da335a8f1
df53af624dea4d7fd87a546c7709d59c5200286e
e3cb33436267c1b11c0133fd1b3d6390e4614447

2/68

https://github.com/Ferra-Labs/ferra-dlmm/tree/1c08a51caadede0109f528319e61829703d4e7a7
https://github.com/Ferra-Labs/ferra-dlmm/tree/3566099f5e84c5766e73988866919fd26fe59090
https://github.com/Ferra-Labs/ferra-dlmm/tree/cd692f9926cb963ec53971d9914dabe0e81eeaea
https://github.com/Ferra-Labs/ferra-dlmm/tree/de095b82f885cbc7d86a3197d3a6d92da335a8f1
https://github.com/Ferra-Labs/ferra-dlmm/tree/df53af624dea4d7fd87a546c7709d59c5200286e
https://github.com/Ferra-Labs/ferra-dlmm/tree/e3cb33436267c1b11c0133fd1b3d6390e4614447

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml 85ae2245efa3f2c0047c7e1380c48
2f5e9c1ebee

BMA sources/libraries/math/bit_math.m
ove

3a14fb6b2ffe44290e6c21d446942
5f215b7fef5

PPH sources/libraries/pair_parameter_h
elper.move

5061665413645c6eab5cdc927015
5f06bc2c6832

TMA sources/libraries/math/tree_math.
move

68b71378cb190e192ad65d3fb48f4
7b42f4dad60

LFA sources/lb_factory.move d81bb8000a1b09803f19289beaf1c
d23d54d2279

FHE sources/libraries/fee_helper.move 1407cb1497fa5323aeac6c46825f1f
85c30d2a7a

PHE sources/libraries/price_helper.mov
e

0e4d244616e4eb222e0f2d4e5936
6198cb2e411c

CON sources/libraries/constants.move 6ef410f0fa49b74cb05c867b65a25
a0709d2915d

SMA sources/libraries/math/safe_math.
move

ff3efbb1506f51d7963721b471c565
040d6916e9

Q6X6 sources/libraries/math/q64x64.mo
ve

4eee515c11ba334e831c72946911
d551f0b63807

3/68

REW sources/rewarder.move ab64695e8ea7f40c34f1832e17f082
286c2e5758

CON1 sources/config.move effdc1e3dde03190d79d3d7bdd44
a04e5709de03

LPA sources/lb_pair.move bbfdd7709bb36cd248b7cc8e326d
7652796a5378

BIN sources/bin.move 8cb67cf53cc993724ef2c68ad0d95
a4038f0aa6d

ACL sources/acl.move 1adb5e352e053681605526fd30c1
9e8c57f5f069

LPO sources/lb_position.move 0c5feec34fd3b0ef0b0fd73364fe41
844bb6843d

4/68

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 32 32 0

Informational 5 5 0

Minor 6 6 0

Medium 8 8 0

Major 13 13 0

Critical 0 0 0

5/68

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

6/68

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/68

2 Summary

This report has been commissioned by Ferra DLMM to identify any potential issues and
vulnerabilities in the source code of the Ferra DLMM smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 32 issues of varying severity, listed below.

ID Title Severity Status

ACL-1 remove_from_all_roles
Permission Removal Is Incomplete

Medium Fixed

ACL-2 Lack of Vote Threshold Check in
cancel() Allows Admins to

Arbitrarily Cancel Proposals

Medium Fixed

ACL-3 propose Missing Parameter
Checking

Minor Fixed

ACL-4 Repeated error code identification Informational Fixed

BIN-1 sub_fees Fee Calculation Logical
Error

Major Fixed

BIN-2 add_reserves_fees Functions Such
As These Should Use Internal Call
Modifiers

Informational Fixed

CON-1 flashloan_percentage_precission
Spelling Mistake

Informational Fixed

8/68

LFA-1 Missing Validation for bin_step Minor Fixed

LPA-1 Missing Fee Handling After Fee
Collection in remove_liquidity()
Function

Major Fixed

LPA-2 Lack of Slippage Protection in
add_liquidity() and
remove_liquidity() Functions

Major Fixed

LPA-3 Missing Reward Collection in
add_liquidity() and
remove_liquidity() May Lead to

Inaccurate reward_per_fee_delta
Calculations

Major Fixed

LPA-4 Incorrect Reward Accrual Due to
Delayed Liquidity Addition After
Snapshot Update

Major Fixed

LPA-5 Missing Update to total_fees_gen
in remove_liquidity() Leads to
Reduced Reward Calculation

Major Fixed

LPA-6 Persistent total_fees Without
Reduction Allows Reward Collection
After Position Closure

Major Fixed

LPA-7 Unsettled Rewards Before
reward_factor Update Allow Excess
Payouts and Front-Running

Major Fixed

LPA-8 Bypassing Intended Lock Period by
Adding Liquidity After
lock_until_timestamp Countdown

Major Fixed

9/68

LPA-9 Adding New Rewarder Allows Users
to Retroactively Claim Multiple
Types of Rewards

Major Fixed

LPO-1 Potential Out-of-Gas Risk in
increase_liquidity() due to Iteration
over Excessive Bin IDs

Major Fixed

LPO-2 Missing Fee Claim Check in
close_position() May Cause User

Fund Loss

Medium Fixed

LPO-3 add_bin Not Used Minor Fixed

PPH-1 Missing Validation for
variable_fee_control and
protocol_share Upper Limits in
set_static_fee_parameters()

Informational Fixed

CON1-1 No Limit To The Traversal Length Of
Bins

Medium Fixed

CON1-2 add_update_bin_step And
delete_bin_step Check For

Deficiencies

Minor Fixed

LPA-10 Rewards Not Settled Before
Liquidity Removal

Major Fixed

LPA-11 Rewards and Fees Not Settled
When Adding Liquidity Multiple
Times

Major Fixed

LPA-12 Missing Pause Mechanism in
flash_loan() Function May Lead to

Reentrancy Vulnerability

Medium Fixed

10/68

LPA-13 Inaccurate Repayment Check in
repay_flash_loan() May Lead to

Donation Attack

Medium Fixed

LPA-14 remove_liquidity Logical Error Medium Fixed

LPA-15 Incorrect Role Verification in
add_rewarder() Function

Medium Fixed

LPA-16 Inconsistent Lock Timestamp
Handling Prevents Adding Liquidity

Minor Fixed

LPA-17 Use && instead of || Minor Fixed

LPA-18 Redundant Calculation of
lp_comp_fee_x in update_bin()

Function

Informational Fixed

11/68

3 Participant Process

Here are the relevant actors with their respective abilities within the Ferra DLMM Smart
Contract :

ADMIN

set_upgrade_cap : Store the package's UpgradeCap into the ACL state

set_publisher : Store the package's Publisher object into the ACL state

propose :Create a new governance proposal for a specific action

vote : Cast a vote in favor of an existing

execute : Execute a proposal that has met its conditions

cancel : Cancel an existing proposal

REWARD_ROLE

add_rewarder : Add a reward for the specified trading pair

emergent_withdraw : Emergency withdrawal of funds

update_emission : Update the reward emission rate of the specified trading pair

UPGRADE_ROLE

update_package_version : Store the package's UpgradeCap into the ACL state

POOL_MANAGER_ROLE

create_pair : Create and register a new liquidity pool

set_static_fee_parameters : Set the static cost parameter for the specified LBPair

force_decay : Forcibly triggers the volatility accumulator decay process of the specified

LBPair

increase_oracle_length : Increase the oracle data store length for the specified LBPair

pause_pair : Pause or unpause the specified LBPair

12/68

collect_protocol_fees : Collect the accumulated agreement fees in the trading pairs

CONFIGROLE

add_update_bin_step : Add or update the cost parameter of bin step

delete_bin_step : Delete the fee parameter of the specified bin step

update_flash_loan_max_amount : Updates the global maximum flash loan amount

update_flash_loan_fee_rate : Updates the global flash loan fee rate

add_whitelist_token : Adds a specified coin type to the whitelist of quote assets

delete_whitelist_token : Removes a specified coin type from the quote asset whitelist

set_allow_create_pair : Sets a boolean flag to globally enable or disable the creation of

new liquidity pairs

set_pause : Set the global pause state

set_flash_loan_enable : Set the activation status of the flash loan

User

deposit_reward : Deposit rewards into the global vault

swap : Perform token exchange operations

open_position : Create a new liquidity position

lock_position : Lock the position until the specified time

add_liquidity : Add liquidity to the specified position

remove_liquidity : Remove liquidity from positions and withdraw assets

close_position : Close the position of the specified trading pair

collect_position_fees : Collect the fees for the specified position

collect_position_rewards : Collect rewards for the specified position

flash_loan : Perform the flash loan operation

13/68

repay_flash_loan : Repay flash loans

14/68

4 Findings

ACL-1 remove_from_all_roles Permission Removal Is
Incomplete

Severity: Medium

Status: Fixed

Code Location:

sources/acl.move#365

Descriptions:

When a proposal of type 'PROPOSAL_REMOVE_ADMIN' is executed, the system will call the

internal function 'remove_from_all_roles' to remove all role permissions of the

administrator. However, the 'remove_from_all_roles' function has an implementation

oversight. It only removes the permissions whose addresses are in' OPERATOR_ROLE ',

'REWARD_ROLE', and 'PROTOCOL_FEE_ROLE'. However, the removal operation of

'UPGRADE_ROLE' was omitted

 fun fun remove_from_all_rolesremove_from_all_roles((aclacl:: &&mut mut ACLACL,, targettarget:: address address)) {{
 // Remove from all role types// Remove from all role types
 letlet operator_set operator_set == table table::::borrow_mutborrow_mut((&&mut aclmut acl..rolesroles,, OPERATOR_ROLEOPERATOR_ROLE));;
 ifif ((vec_setvec_set::::containscontains((operator_setoperator_set,, &&targettarget)))) {{
 vec_setvec_set::::removeremove((operator_setoperator_set,, &&targettarget));;
 }};;

 letlet reward_set reward_set == table table::::borrow_mutborrow_mut((&&mut aclmut acl..rolesroles,, REWARD_ROLEREWARD_ROLE));;
 ifif ((vec_setvec_set::::containscontains((reward_setreward_set,, &&targettarget)))) {{
 vec_setvec_set::::removeremove((reward_setreward_set,, &&targettarget));;
 }};;

 letlet fee_set fee_set == table table::::borrow_mutborrow_mut((&&mut aclmut acl..rolesroles,, PROTOCOL_FEE_ROLEPROTOCOL_FEE_ROLE));;
 ifif ((vec_setvec_set::::containscontains((fee_setfee_set,, &&targettarget)))) {{
 vec_setvec_set::::removeremove((fee_setfee_set,, &&targettarget));;
 }};;

15/68

 }}
............

 constconst OPERATOR_ROLEOPERATOR_ROLE:: u8 u8 == 00;;
 constconst REWARD_ROLEREWARD_ROLE:: u8 u8 == 11;;
 constconst PROTOCOL_FEE_ROLEPROTOCOL_FEE_ROLE:: u8 u8 == 22;;
 constconst UPGRADE_ROLEUPGRADE_ROLE:: u8 u8 == 33;;

Suggestion:

Add Code

letlet upgrade_set upgrade_set == table table::::borrow_mutborrow_mut((&&mut aclmut acl..rolesroles,, UPGRADE_ROLEUPGRADE_ROLE));;
ifif ((vec_setvec_set::::containscontains((upgrade_setupgrade_set,, &&targettarget)))) {{
 vec_setvec_set::::removeremove((upgrade_setupgrade_set,, &&targettarget));;
}};;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/68

ACL-2 Lack of Vote Threshold Check in cancel() Allows Admins
to Arbitrarily Cancel Proposals

Severity: Medium

Status: Fixed

Code Location:

sources/acl.move#275-296

Descriptions:

The cancel() function is used to cancel a proposal.

publicpublic fun fun cancelcancel((
 aclacl:: &&mut mut ACLACL,,
 proposal_idproposal_id:: u64 u64,,
 clockclock:: &&ClockClock,,
 ctxctx:: &&TxContextTxContext
)) {{
 letlet sender sender == tx_context tx_context::::sendersender((ctxctx));;
 assertassert!!((is_adminis_admin((aclacl,, sender sender)),, E_NOT_ADMINE_NOT_ADMIN));;
 assertassert!!((tabletable::::containscontains((&&aclacl..proposalsproposals,, proposal_id proposal_id)),, E_PROPOSAL_NOT_FOUNDE_PROPOSAL_NOT_FOUND));;
 letlet proposal proposal == table table::::borrowborrow((&&aclacl..proposalsproposals,, proposal_id proposal_id));;
 ifif((proposalproposal..proposal_typeproposal_type ==== PROPOSAL_REMOVE_ADMINPROPOSAL_REMOVE_ADMIN)){{
 assertassert!!((proposalproposal..targettarget !=!= sender sender,, E_NOT_CANCEL_PROPOSALE_NOT_CANCEL_PROPOSAL))
 }};;

 letlet _proposal _proposal == table table::::removeremove((&&mut aclmut acl..proposalsproposals,, proposal_id proposal_id));;

 eventevent::::emitemit((ProposalCancelledProposalCancelled {{
 proposal_idproposal_id,,
 cancelled_bycancelled_by:: sender sender,,
 cancelled_atcancelled_at:: clock clock::::timestamp_mstimestamp_ms((clockclock)),,
 }}));;
 }}

17/68

However, the protocol does not verify whether the votes are less than 50%. This means that

cancel() can be used to cancel a valid proposal. If a proposal is unfavorable to a certain

admin (e.g., revoking their role), the admin could call cancel() to terminate the proposal,

preventing it from being executed.

Suggestion:

It is recommended to implement a vote threshold check in the cancel() function to ensure

that only proposals with less than the required minimum support (e.g., <50%) can be

canceled.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/68

ACL-3 propose Missing Parameter Checking

Severity: Minor

Status: Fixed

Code Location:

sources/acl.move#179

Descriptions:

In the 'acl::propose' function, the parameter 'proposal_type' is not verified for validity. This

function allows administrators to create a proposal type with any u8 value. However, in the

'execute_proposal_action' function, only proposal types from 0 to 7 are processed. If a

proposal of type 8 or higher is created, although it can be voted through, it will permanently

fail (revert) during the execution stage because no valid actions are matched. This will cause

the proposal to remain permanently in storage (unless it is cancelled), resulting in state

inflation and potential governance chaos.

Suggestion:

Add validation of the proposal_type parameter at the entrance of the propose function. Only

values between 0 and 7 are allowed to pass; otherwise, the transaction should be

immediately suspended

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/68

ACL-4 Repeated error code identification

Severity: Informational

Status: Fixed

Code Location:

sources/acl.move#38

Descriptions:

Repeated error codes are defined in the module. The constants

E_PUBLISHER_NOT_AVAILABLE and E_FUND_RECEIVER_NOT_SET both use error code 8.

Meanwhile, both E_NOT_CANCEL_PROPOSAL and E_REWARD_RECEIVER_NOT_SET used

error code 9. This will lead to ambiguous error messages returned on the chain when a

transaction fails, making it impossible to accurately determine the root cause of the error,

thereby seriously affecting the debuggability of the contract and the efficiency of problem-

solving.

Suggestion:

Modify the error code identifier

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/68

BIN-1 sub_fees Fee Calculation Logical Error

Severity: Major

Status: Fixed

Code Location:

sources/bin.move#229

Descriptions:

In the 'bin_manager' module, there are serious logical errors in the implementation of the

'sub_fees' function. This function is originally applied to subtract the corresponding amount

from the total fee reserve of bin after the liquidity provider has claimed the fee. However, the

code 'bin.fee_y = safe_math::add_u64(bin.fee_y, sub_fee_y); 'sub_fee_y' was wrongly added to

'bin.fee_y' instead of subtracted. This leads to the situation where whenever a user claims

the fees of Y tokens, the total fees recorded in this bin not only do not decrease but increase

instead, causing a serious mismatch between the fee status and the actual funds, and may

result in the funds being trapped or the protocol status being damaged

 publicpublic fun fun sub_feessub_fees((
 binbin:: &&mut mut BinBin,,
 sub_fee_xsub_fee_x:: u64 u64,,
 sub_fee_ysub_fee_y:: u64 u64
)) {{
 binbin..fee_xfee_x == safe_math safe_math::::sub_u64sub_u64((binbin..fee_xfee_x,, sub_fee_x sub_fee_x));;
 binbin..fee_yfee_y == safe_math safe_math::::add_u64add_u64((binbin..fee_yfee_y,, sub_fee_y sub_fee_y));;
 }}

Suggestion:

Fix the erroneous logic in the 'sub_fees' function. Set 'bin.fee_y =

safe_math::add_u64(bin.fee_y, sub_fee_y); Modify to 'bin.fee_y =

safe_math::sub_u64(bin.fee_y, sub_fee_y); To ensure that the corresponding amount can be

correctly deducted from the reserve when claiming the fees.

21/68

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/68

BIN-2 add_reserves_fees Functions Such As These Should Use
Internal Call Modifiers

Severity: Informational

Status: Fixed

Code Location:

sources/bin.move#184

Descriptions:

Functions such as add_fee_growth, add_reserves_fees, ub_fees, update_reserves_fees, and

subtract_bin should only use the public(friend) modifier when called internally

Suggestion:

Modify the function modifier

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/68

CON-1 flashloan_percentage_precission Spelling Mistake

Severity: Informational

Status: Fixed

Code Location:

sources/libraries/constants.move#33

Descriptions:

The correct spelling of the function name flashloan_percentage_precission should be

flashloan_percentage_precision

 publicpublic fun fun flashloan_percentage_precissionflashloan_percentage_precission(()):: u64 u64 {{
FLASH_LOAN_PERCENTAGE_PRECISIONFLASH_LOAN_PERCENTAGE_PRECISION }}

Suggestion:

Modify the function name

Resolution:

This issue has been fixed. The client has adopted our suggestions.

24/68

LFA-1 Missing Validation for bin_step

Severity: Minor

Status: Fixed

Code Location:

sources/lb_factory.move#85-98

Descriptions:

In the create_pair() function, the protocol retrieves parameter values based on the

bin_step .

 letlet lb_pair lb_pair == lb_pair lb_pair::::newnew<<XX,, YY>>((
 active_idactive_id,,
 bin_stepbin_step,,
 configconfig::::base_factorbase_factor((configconfig,, bin_step bin_step)),,
 configconfig::::filter_periodfilter_period((configconfig,, bin_step bin_step)),,
 configconfig::::decay_perioddecay_period((configconfig,, bin_step bin_step)),,
 configconfig::::reduction_factorreduction_factor((configconfig,, bin_step bin_step)),,
 configconfig::::variable_fee_controlvariable_fee_control((configconfig,, bin_step bin_step)),,
 configconfig::::protocol_shareprotocol_share((configconfig,, bin_step bin_step)),,
 configconfig::::max_volatility_accumulatormax_volatility_accumulator((configconfig,, bin_step bin_step)),,
 bin_initbin_init,,
 clockclock,,
 ctxctx,,
));;

However, it does not verify whether the provided bin_step exists. Using a non-existent

bin_step may lead to unexpected behavior or errors.

Suggestion:

It is recommended to add a validation check to ensure the bin_step is valid before

proceeding.

Resolution:

25/68

This issue has been fixed. The client has adopted our suggestions.

26/68

LPA-1 Missing Fee Handling After Fee Collection in
remove_liquidity() Function

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1504

Descriptions:

In the remove_liquidity() function, the protocol collects fees but does not process or

distribute them.

// Collect fees before modifying bin// Collect fees before modifying bin
 letlet ((_fees_collected_x_fees_collected_x,, _fees_collected_y _fees_collected_y)) == lb_position lb_position::::collect_feescollect_fees((
 &&mut pairmut pair..position_managerposition_manager,,
 positionposition,,
 idid,,
 current_fee_growth_xcurrent_fee_growth_x,,
 current_fee_growth_ycurrent_fee_growth_y,,
));;

Suggestion:

It is recommended to implement proper handling for the collected fees, such as transferring

them to a designated fee recipient or distributing them according to the protocol’s fee

distribution logic.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

27/68

LPA-2 Lack of Slippage Protection in add_liquidity() and
remove_liquidity() Functions

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1034-1125

Descriptions:

The add_liquidity() and remove_liquidity() functions are used to add and remove liquidity,

respectively. However, both functions lack slippage protection, which may expose users to

unfavorable execution due to price movements.

Suggestion:

It is recommended to add slippage protection mechanisms to ensure users receive expected

outcomes and avoid potential losses.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

28/68

LPA-3 Missing Reward Collection in add_liquidity() and
remove_liquidity() May Lead to Inaccurate
reward_per_fee_delta Calculations

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1015-1049

Descriptions:

The add_liquidity() function allows users to add liquidity, but the protocol does not collect

the pair reward during this process.

 publicpublic fun add_liquidity fun add_liquidity<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 positionposition:: &&mut mut LBPositionLBPosition,,
 idsids:: vector vector<<u32u32>>,,
 distribution_xdistribution_x:: vector vector<<u64u64>>,,
 distribution_ydistribution_y:: vector vector<<u64u64>>,,
 coin_xcoin_x:: CoinCoin<<XX>>,,
 coin_ycoin_y:: CoinCoin<<YY>>,,
 min_amount_xmin_amount_x:: u64 u64,,
 min_amount_ymin_amount_y:: u64 u64,,
 clockclock:: &&ClockClock,,
 ctxctx:: &&mut mut TxContextTxContext,,
)) {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 assertassert!!((
 objectobject::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair)) ==== lb_position lb_position::::pair_idpair_id((positionposition)),,
 E_POSITION_MISMATCHE_POSITION_MISMATCH,,
));;
 letlet sender sender == tx_context tx_context::::sendersender((ctxctx));;

29/68

Since reward_per_fee_delta is calculated as rewards_generated / total_fees_ever , and

total_fees_ever changes over time, not collecting the reward at the correct moment may

lead to inaccurate calculations in future updates. The same issue also exists in the

remove_liquidity() function.

 // Only distribute if we have both rewards and fees// Only distribute if we have both rewards and fees
 ifif ((rewards_generated rewards_generated >> 00 &&&& pair pair..reward_statereward_state..total_fees_evertotal_fees_ever >> 00)) {{
 // reward per fee rate// reward per fee rate
 letlet reward_per_fee_delta reward_per_fee_delta == safe_math safe_math::::mul_div_u128mul_div_u128((
 rewards_generatedrewards_generated,,
 q64x64q64x64::::scale_64x64scale_64x64(()),,
 pairpair..reward_statereward_state..total_fees_evertotal_fees_ever
));;

Suggestion:

It is recommended to collect the pair reward in both functions to ensure accurate reward

accounting.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

30/68

LPA-4 Incorrect Reward Accrual Due to Delayed Liquidity
Addition After Snapshot Update

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1679

Descriptions:

In the open_position() function, the protocol initializes the reward_per_fee_snapshot .

publicpublic fun open_position fun open_position<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 lock_until_timestamplock_until_timestamp:: u64 u64,,
 ctxctx:: &&mut mut TxContextTxContext,,
)):: LBPositionLBPosition {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 letlet pair_id pair_id == object object::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair));;

 ensure_reward_vectors_initializedensure_reward_vectors_initialized((pairpair));;

 letlet position position == lb_position lb_position::::open_positionopen_position<<XX,, YY>>((
 &&mut pairmut pair..position_managerposition_manager,,
 pair_idpair_id,,
 lock_until_timestamplock_until_timestamp,,
 ctxctx,,
));;

 eventevent::::emitemit((OpenPositionEventOpenPositionEvent {{
 pairpair:: pair_id pair_id,,
 positionposition:: object object::::idid((&&positionposition)),,
 ownerowner:: tx_context tx_context::::sendersender((ctxctx)),,
 }}));;

31/68

 positionposition
 }}

However, the protocol does not update the position's reward_per_fee_snapshot when

add_liquidity() is called.It only updates it within the collect_position_rewards() function.

 // Update snapshot// Update snapshot
 lb_positionlb_position::::update_reward_per_fee_snapshotupdate_reward_per_fee_snapshot((
 position_infoposition_info,,
 rewarder_indexrewarder_index,,
 current_ratecurrent_rate
));;

This behavior introduces an issue: if a user opens a position and does not immediately add

liquidity, but instead first calls collect_position_rewards() , the protocol will update the

user's position with the current reward rate using update_reward_per_fee_snapshot() . If the

user then waits for a period of time and later adds liquidity, the next time they call

collect_position_rewards() , the rewards will be calculated starting from the previously

updated snapshot (which may be higher), even though the user did not contribute liquidity

during that earlier period. This could result in the user receiving more rewards than they

should.

Suggestion:

It is recommended to call update_reward_per_fee_snapshot() when adding liquidity to

update the user's position reward rate.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

32/68

LPA-5 Missing Update to total_fees_gen in remove_liquidity()
Leads to Reduced Reward Calculation

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1482

Descriptions:

A user's reward is calculated based on their total_fees , which represents the total fees they

have collected.

 letlet total_fees total_fees == lb_position lb_position::::get_total_fees_genget_total_fees_gen((position_infoposition_info));;
 letlet rewards rewards == safe_math safe_math::::mul_u128mul_u128((
 total_feestotal_fees,,
 safe_mathsafe_math::::sub_u128sub_u128((current_ratecurrent_rate,, last_rate last_rate))
)) >>>> 6464;;

 letlet fee_normalized fee_normalized == q64x64 q64x64::::liquidity_from_amountsliquidity_from_amounts((
 total_fees_xtotal_fees_x,,
 total_fees_ytotal_fees_y,,
 active_priceactive_price
));;

 // Tracking reward// Tracking reward
 // Update position's total normalized fees// Update position's total normalized fees
 letlet position_info position_info == lb_position lb_position::::borrow_mut_position_infoborrow_mut_position_info((
 &&mut pairmut pair..position_managerposition_manager,,
 objectobject::::idid((positionposition))
));;
 lb_positionlb_position::::add_total_fees_genadd_total_fees_gen((position_infoposition_info,, fee_normalized fee_normalized));;

33/68

However, in the remove_liquidity() function, although the user collects fees, the protocol

does not increase position_info.total_fees_gen . As a result, when the user later collects

rewards, the reward amount is reduced due to the missing contribution to total_fees_ever .

Suggestion:

It is recommended to call lb_position::add_total_fees_gen() in the remove_liquidity()

function to increase the value of total_fees_gen .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

34/68

LPA-6 Persistent total_fees Without Reduction Allows Reward
Collection After Position Closure

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1669-1673

Descriptions:

The collect_position_rewards() function is used to collect rewards from a position. The

rewards are calculated using the formula: rewards = total_fees * delta_rate .

 letlet total_fees total_fees == lb_position lb_position::::get_total_fees_genget_total_fees_gen((position_infoposition_info));;
 letlet rewards rewards == safe_math safe_math::::mul_u128mul_u128((
 total_feestotal_fees,,
 safe_mathsafe_math::::sub_u128sub_u128((current_ratecurrent_rate,, last_rate last_rate))
)) >>>> 6464;;

However, total_fees continuously increases and is never reduced, even when the user no

longer holds a position. As a result, users can still be able to call collect_position_rewards()

and receive rewards despite having no active liquidity position, leading to reward over-

distribution.

Suggestion:

It is recommended to optimize the reward calculation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

35/68

LPA-7 Unsettled Rewards Before reward_factor Update Allow
Excess Payouts and Front-Running

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1462-1489

Descriptions:

The collect_position_fees() function is used to collect fees and automatically calculate and

distribute rewards.

 // Collect fees and automatically calculate and collect rewards// Collect fees and automatically calculate and collect rewards
 publicpublic fun collect_position_fees fun collect_position_fees<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 positionposition:: &&mut mut LBPositionLBPosition,,
 bin_idsbin_ids:: vector vector<<u32u32>>,,
 _clock_clock:: &&ClockClock,,
 ctxctx:: &&mut mut TxContextTxContext,,
)):: ((CoinCoin<<XX>>,, CoinCoin<<YY>>)) {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 assertassert!!((
 objectobject::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair)) ==== lb_position lb_position::::pair_idpair_id((positionposition)),,
 E_POSITION_MISMATCHE_POSITION_MISMATCH,,
));;
 assertassert!!((vectorvector::::lengthlength((&&bin_idsbin_ids)) >> 00,, E_INVALID_BIN_IDSE_INVALID_BIN_IDS));;

The reward is calculated as:

reward_amount reward_amount == total_normalized_fees total_normalized_fees ** reward_factor reward_factor // REWARD_FACTOR_PRECISIONREWARD_FACTOR_PRECISION

36/68

 ifif ((reward_amount reward_amount >> 00)) {{
 lb_positionlb_position::::add_reward_debtadd_reward_debt((
 &&mut pairmut pair..position_managerposition_manager,,
 positionposition,,
 jj,,
 reward_amountreward_amount
));;
 }};;

An operator can call update_reward_factor() to change the reward factor.

publicpublic fun update_reward_factor fun update_reward_factor<<XX,, YY,, RewardCoinRewardCoin>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 vaultvault:: &&RewarderGlobalVaultRewarderGlobalVault,,
 reward_factorreward_factor:: u128 u128,,
 _clock_clock:: &&ClockClock,,
 ctxctx:: &&mut mut TxContextTxContext
)) {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;

 configconfig::::check_operator_rolecheck_operator_role((configconfig,, tx_contexttx_context::::sendersender((ctxctx))));;

 letlet pair_id pair_id == object object::::idid((pairpair));;

 rewarderrewarder::::update_reward_factorupdate_reward_factor<<RewardCoinRewardCoin>>((
 vaultvault,,
 &&mut pairmut pair..reward_managerreward_manager,,
 pair_idpair_id,,
 reward_factorreward_factor,,
));;

However, when the operator updates the factor, the rewards generated under the previous

factor are not settled beforehand.

This leads to two issues:

37/68

1. Users may receive excess rewards because rewards accrued under the old factor are

calculated using the new, potentially higher factor.

2. Front-running risk: A malicious user who notices the operator is about to call

update_reward_factor() could quickly perform actions that generate fees, wait for the

operator to update the factor, and then immediately call collect_position_fees() to

receive inflated rewards.

Suggestion:

It is recommended to use a growth-based approach to calculate the reward.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

38/68

LPA-8 Bypassing Intended Lock Period by Adding Liquidity
After lock_until_timestamp Countdown

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#920

Descriptions:

When opening a position, the user sets lock_until_timestamp .

publicpublic fun open_position fun open_position<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 lock_until_timestamplock_until_timestamp:: u64 u64,,
 ctxctx:: &&mut mut TxContextTxContext,,
)):: LBPositionLBPosition {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 letlet pair_id pair_id == object object::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair));;

 letlet position position == lb_position lb_position::::open_positionopen_position<<XX,, YY>>((
 &&mut pairmut pair..position_managerposition_manager,,
 pair_idpair_id,,
 lock_until_timestamplock_until_timestamp,,
 ctxctx,,
));;

Liquidity can only be removed if the current time is greater than lock_until_timestamp .

 publicpublic((friendfriend)) fun fun decrease_liquiditydecrease_liquidity((
 managermanager:: &&mut mut LBPositionManagerLBPositionManager,,
 positionposition:: &&LBPositionLBPosition,,
 bin_idbin_id:: u32 u32,,

39/68

 lp_burnlp_burn:: u128 u128,,
 clockclock:: &&ClockClock,,
)){{
 letlet current_time current_time == clock clock::::timestamp_mstimestamp_ms((clockclock));;
 assertassert!!((positionposition..lock_untillock_until <=<= current_time current_time,, E_POSITION_LOCKEDE_POSITION_LOCKED));;

However, since open_position() and add_liquidity() are separate functions, there is an

issue: a user can set lock_until_timestamp when opening the position, wait for a long

period of time, then add liquidity later, and subsequently remove liquidity shortly after. This

results in the actual lock period being shorter than intended.

Suggestion:

When calling add_liquidity() , update or revalidate lock_until_timestamp so that the newly

added liquidity inherits the same remaining lock period or resets the lock period based on

protocol rules.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

40/68

LPA-9 Adding New Rewarder Allows Users to Retroactively
Claim Multiple Types of Rewards

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1555

Descriptions:

The add_rewarder() function allows the operator role to add new rewards. When collecting

fees, the protocol settles rewards based on the accumulated fees, regardless of how many

different reward types exist, and then distributes them to the user. If there were initially only

two reward coins and, after some time, the operator adds a third reward coin, a user who

has never collected position fees during both the two-reward and three-reward periods

could then collect position fees and receive multiple types of rewards at once.

 ifif ((total_normalized_fees total_normalized_fees >> 00)) {{
 letlet rewarders rewarders == rewarder rewarder::::get_rewardersget_rewarders((&&pairpair..reward_managerreward_manager));;
 letlet j j == 00;;
 whilewhile ((j j << vector vector::::lengthlength((rewardersrewarders)))) {{
 letlet rewarder rewarder == vector vector::::borrowborrow((rewardersrewarders,, j j));;
 letlet reward_factor reward_factor == rewarder rewarder::::get_rewarder_factorget_rewarder_factor((rewarderrewarder));;

 ifif ((reward_factor reward_factor >> 00)) {{
 letlet reward_amount reward_amount == rewarder rewarder::::calculate_reward_amountcalculate_reward_amount((
 total_normalized_feestotal_normalized_fees,,
 reward_factorreward_factor
));;

 ifif ((reward_amount reward_amount >> 00)) {{
 lb_positionlb_position::::add_reward_debtadd_reward_debt((
 &&mut pairmut pair..position_managerposition_manager,,
 positionposition,,
 jj,,

41/68

 reward_amountreward_amount
));;
 }};;
 }};;
 j j == j j ++ 11;;
 }};;
 }};;

Suggestion:

Resolution:

This issue has been fixed. The client has adopted our suggestions.

42/68

LPO-1 Potential Out-of-Gas Risk in increase_liquidity() due to
Iteration over Excessive Bin IDs

Severity: Major

Status: Fixed

Code Location:

sources/lb_position.move#310-441

Descriptions:

In the increase_liquidity() function, the protocol iterates through each bin ID and the

corresponding rewards for each bin. If the number of bin IDs is too large, it may lead to an

out-of-gas issue.

 whilewhile ((i i << len len)) {{
 letlet bin_id bin_id == **vectorvector::::borrowborrow((&&bin_idsbin_ids,, i i));;
 letlet share share == **vectorvector::::borrowborrow((&&sharesshares,, i i));;
 letlet fee_growth_x fee_growth_x == **vectorvector::::borrowborrow((&&fee_growths_xfee_growths_x,, i i));;
 letlet fee_growth_y fee_growth_y == **vectorvector::::borrowborrow((&&fee_growths_yfee_growths_y,, i i));;
 letlet current_reward_growth current_reward_growth == **vectorvector::::borrowborrow((&&reward_growthsreward_growths,, i i));;

 letlet ((group_indexgroup_index,, position_in_group position_in_group)) == resolve_bin_group_indexresolve_bin_group_index((bin_idbin_id));;

 ifif ((group_index group_index !=!= current_group_index current_group_index)) {{
 ifif ((!!tabletable::::containscontains((&&position_infoposition_info..binsbins,, group_index group_index)))) {{
 tabletable::::addadd((&&mut position_infomut position_info..binsbins,, group_index group_index,, PackedBinsPackedBins {{
 active_bins_bitmapactive_bins_bitmap:: 0u8 0u8,,
 bin_databin_data:: vector vector::::emptyempty(()),,
 }}));;
 }};;
 current_group current_group == table table::::borrow_mutborrow_mut((&&mut position_infomut position_info..binsbins,, group_index group_index));;
 current_group_index current_group_index == group_index group_index;;
 }};;

43/68

 whilewhile ((j j << min_rewarders min_rewarders)) {{
 letlet current_growth current_growth == **vectorvector::::borrowborrow((&¤t_reward_growthcurrent_reward_growth,, j j));;
 letlet last_growth last_growth == **vectorvector::::borrowborrow((&&binbin..reward_growth_inside_lastreward_growth_inside_last,, j j));;

 ifif ((current_growth current_growth >> last_growth last_growth)) {{
 letlet pending_reward pending_reward == safe_math safe_math::::u128_to_u64u128_to_u64((
 ((((binbin..amountamount ** ((current_growth current_growth -- last_growth last_growth)))) >>>> 64u8 64u8))
));;

Suggestion:

It is recommended to introduce safeguards to limit the maximum number of bin IDs that can

be processed in a single transaction.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

44/68

LPO-2 Missing Fee Claim Check in close_position() May Cause
User Fund Loss

Severity: Medium

Status: Fixed

Code Location:

sources/lb_position.move#490

Descriptions:

In the close_position() function, the protocol only checks whether the position still holds LP

tokens and whether the rewards have been fully claimed.

 publicpublic((friendfriend)) fun fun close_positionclose_position((
 managermanager:: &&mut mut LBPositionManagerLBPositionManager,,
 positionposition:: LBPositionLBPosition,,
)) {{
 letlet position_info position_info == table table::::removeremove((&&mut managermut manager..positionspositions,, objectobject::::idid((&&positionposition))));;
 assertassert!!((is_empty_lpis_empty_lp((&&position_infoposition_info)) &&&& is_empty_rewardis_empty_reward((&&positionposition)),,
E_POSITION_NOT_EMPTYE_POSITION_NOT_EMPTY));;
 destroy_position_infodestroy_position_info((position_infoposition_info));;
 destroydestroy((positionposition));;
 }}

However, it does not verify whether the position fees have been collected. If the protocol

allows a position to be closed without first claiming the fees, this could result in a loss of

user funds.

Suggestion:

It is recommended to verify whether all fees have been claimed

Resolution:

This issue has been fixed. The client has adopted our suggestions.

45/68

LPO-3 add_bin Not Used

Severity: Minor

Status: Fixed

Code Location:

sources/lb_position.move#211

Descriptions:

The add_bin function is an internal function and no other function calls it, so it is redundant

code. Moreover, after the add_bin function successfully adds a new bin data to the bins table

of LBPositionInfo, The total_bins count in the LBPosition structure was not increased

synchronously

 publicpublic((friendfriend)) fun fun add_binadd_bin((
 managermanager:: &&mut mut LBPositionManagerLBPositionManager,,
 positionposition:: &&LBPositionLBPosition,,
 bin_idbin_id:: u32 u32,,
 new_bin_datanew_bin_data:: LBBinPositionLBBinPosition,,
)) {{

Suggestion:

Delete unused functions

Resolution:

This issue has been fixed. The client has adopted our suggestions.

46/68

PPH-1 Missing Validation for variable_fee_control and
protocol_share Upper Limits in set_static_fee_parameters()

Severity: Informational

Status: Fixed

Code Location:

sources/libraries/pair_parameter_helper.move#135-141

Descriptions:

In the public fun set_static_fee_parameters() function, the protocol verifies filter_period ,

reduction_factor , protocol_share , and max_volatility_accumulator , but it does not check

whether variable_fee_control and protocol_share are below their maximum allowed

values.

 publicpublic fun fun set_static_fee_parametersset_static_fee_parameters((
 paramsparams:: &&mut mut PairParametersPairParameters,,
 base_factorbase_factor:: u32 u32,,
 filter_periodfilter_period:: u16 u16,,
 decay_perioddecay_period:: u16 u16,,
 reduction_factorreduction_factor:: u16 u16,,
 variable_fee_controlvariable_fee_control:: u32 u32,,
 protocol_shareprotocol_share:: u16 u16,,
 max_volatility_accumulatormax_volatility_accumulator:: u32 u32
)) {{
 assertassert!!((
 filter_period filter_period <=<= decay_period decay_period &&&&
 ((reduction_factor reduction_factor asas u64 u64)) <=<= constants constants::::basis_point_maxbasis_point_max(()) &&&&
 ((protocol_share protocol_share asas u64 u64)) <=<= constants constants::::max_protocol_sharemax_protocol_share(()) &&&&
 max_volatility_accumulator max_volatility_accumulator <=<= 0xfffff0xfffff,, // 20 bits max// 20 bits max
 E_INVALID_PARAMETERE_INVALID_PARAMETER
));;

Suggestion:

47/68

It is recommended to add validation to ensure that both variable_fee_control and

protocol_share are less than their respective maximum limits.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

48/68

CON1-1 No Limit To The Traversal Length Of Bins

Severity: Medium

Status: Fixed

Code Location:

sources/config.move#31

Descriptions:

There is no setting like MAX_BIN_PER_POSITION. Operations such as trading (swap),

adding/removing liquidity, etc. all require traversing the bins within the position. The more

bins traversed, the higher the Gas consumption will be. Setting the upper limit of the

crossed BIN ensures that the computational load of any single operation is within a

controllable and predictable range. This can prevent transactions from failing due to

exceeding the block Gas limit of the Sui network, thereby ensuring the availability of the

protocol.For DLMM contracts of the same type, the configuration value of

max_bins_in_position is around 100

Suggestion:

Add the maximum number of bins to be traversed. When there are operations involving

bins, limit the maximum number

Resolution:

This issue has been fixed. The client has adopted our suggestions.

49/68

CON1-2 add_update_bin_step And delete_bin_step Check
For Deficiencies

Severity: Minor

Status: Fixed

Code Location:

sources/config.move#120

Descriptions:

In the add_update_bin_step and delete_bin_step functions of the config module, it is only

verified that the bin_step parameter is not less than MIN_BIN_STEP , but it is not verified

whether it exceeds MAX_BIN_STEP . Although there is a validate_bin_step function in the

module that contains a full range check, these two key state change functions do not call it.

This causes inconsistency in the verification logic and allows setting a bin_step beyond the

expected range.

Suggestion:

Add checks

Resolution:

This issue has been fixed. The client has adopted our suggestions.

50/68

LPA-10 Rewards Not Settled Before Liquidity Removal

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1366-1372

Descriptions:

In the remove_liquidity() function, the protocol decreases the user's liquidity but does not

settle the rewards, which could cause the user to receive lower rewards."

 // Decrease LP from position// Decrease LP from position
 lb_positionlb_position::::decrease_liquiditydecrease_liquidity((
 &&mut pairmut pair..position_managerposition_manager,,
 positionposition,,
 idid,,
 lp_burnlp_burn,,
 clockclock,,
));;

Suggestion:

It is recommended to settle the user's rewards before decreasing the position.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

51/68

LPA-11 Rewards and Fees Not Settled When Adding Liquidity
Multiple Times

Severity: Major

Status: Fixed

Code Location:

sources/lb_pair.move#1114-1123

Descriptions:

The add_liquidity() function allows users to add liquidity. Each time a user adds liquidity,

the protocol updates the position's reward growth and fee growth.

 // Update position, fee growth, reward growth// Update position, fee growth, reward growth
 lb_positionlb_position::::increase_liquidityincrease_liquidity((
 &&mut pairmut pair..position_managerposition_manager,,
 &&mut pairmut pair..bin_managerbin_manager,,
 positionposition,,
 idid,,
 shareshare,,
 fee_growth_xfee_growth_x,,
 fee_growth_yfee_growth_y,,
 current_reward_growthcurrent_reward_growth,,
));;

However, if a user adds liquidity multiple times to the same position, the repeated updates

to reward growth and fee growth will overwrite previous values, causing the user's prior

rewards and fees to remain unsettled and resulting in reduced rewards and fees for the

user.

Suggestion:

52/68

It is recommended to settle the user's accumulated rewards and fees before updating

reward growth and fee growth in add_liquidity() .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

53/68

LPA-12 Missing Pause Mechanism in flash_loan() Function
May Lead to Reentrancy Vulnerability

Severity: Medium

Status: Fixed

Code Location:

sources/lb_pair.move#1963-2025

Descriptions:

The flash_loan() function allows users to borrow funds. However, the protocol does not set

the pause flag to true during the execution of the function, which may introduce a

reentrancy vulnerability.

 publicpublic fun flash_loan fun flash_loan<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 is_token_xis_token_x:: bool bool,,
 amountamount:: u64 u64,,
)):: ((BalanceBalance<<XX>>,, BalanceBalance<<YY>>,, FlashLoanReceiptFlashLoanReceipt)) {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;

 // Check flash loan amount// Check flash loan amount
 assertassert!!((amount amount >> 00,, E_INVALID_FLASH_LOANE_INVALID_FLASH_LOAN));;

 letlet available_balance available_balance == ifif ((is_token_xis_token_x)) {{
 balancebalance::::valuevalue<<XX>>((&&pairpair..balance_xbalance_x))
 }} elseelse {{
 balancebalance::::valuevalue<<YY>>((&&pairpair..balance_ybalance_y))
 }};;

Suggestion:

It is recommended to set pause = true at the beginning of the flash_loan() function and

reset it to false in the repay_flash_loan() function to prevent potential reentrant calls

54/68

during the flash loan process.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

55/68

LPA-13 Inaccurate Repayment Check in repay_flash_loan()
May Lead to Donation Attack

Severity: Medium

Status: Fixed

Code Location:

sources/lb_pair.move#2048

Descriptions:

The repay_flash_loan() function is used to repay the flash loan. Within the function, the

protocol checks that the repayment balance is greater than or equal to the sum of amount

+ fee_amount .

 ifif ((loan_xloan_x)) {{
 assertassert!!((balancebalance::::valuevalue<<XX>>((&&balance_xbalance_x)) >=>= amount amount ++ fee_amount fee_amount,,
E_INSUFFICIENT_AMOUNT_INE_INSUFFICIENT_AMOUNT_IN));;
 balancebalance::::joinjoin<<XX>>((&&mut pairmut pair..balance_xbalance_x,, balance_x balance_x));;
 balancebalance::::destroy_zerodestroy_zero<<YY>>((balance_ybalance_y));;
 }} elseelse {{
 assertassert!!((balancebalance::::valuevalue<<YY>>((&&balance_ybalance_y)) >=>= amount amount ++ fee_amount fee_amount,,
E_INSUFFICIENT_AMOUNT_INE_INSUFFICIENT_AMOUNT_IN));;
 balancebalance::::joinjoin<<YY>>((&&mut pairmut pair..balance_ybalance_y,, balance_y balance_y));;
 balancebalance::::destroy_zerodestroy_zero<<XX>>((balance_xbalance_x));;
 }};;

However, this logic may expose the protocol to a donation (donate) attack, where users

overpay to manipulate accounting or internal balances.

Suggestion:

It is recommended to strictly check that the repayment balance is exactly equal to amount

+ fee_amount to prevent such attacks.

Resolution:

56/68

This issue has been fixed. The client has adopted our suggestions.

57/68

LPA-14 remove_liquidity Logical Error

Severity: Medium

Status: Fixed

Code Location:

sources/lb_pair.move#1271

Descriptions:

The contract maintains global 'lp_fee_x' and 'lp_fee_y' counters in the 'LBPair' structure to

track the total amount of all fees in the pool that have not been claimed by liquidity

providers. These counters increase correctly when users generate fees through 'swap' or

'add_liquidity' (on active bins). When the user explicitly claims the fees by calling the

'collect_position_fees' function, these counters will also decrease correctly. However, the

'remove_liquidity' function also returns the fees that users are due to (including

accumulated fees and saved fees) to users in business logic. But after performing this

operation, the function does not subtract this part of the paid fees from the global 'lp_fee_x'

and 'lp_fee_y' counters.

Suggestion:

Add Code

 total_fees_x total_fees_x == safe_math safe_math::::add_u64add_u64((total_fees_xtotal_fees_x,, saved_x saved_x));;
 total_fees_y total_fees_y == safe_math safe_math::::add_u64add_u64((total_fees_ytotal_fees_y,, saved_y saved_y));;

 pairpair..lp_fee_xlp_fee_x == safe_math safe_math::::sub_u64_cape_zerosub_u64_cape_zero((pairpair..lp_fee_xlp_fee_x,, total_fees_x total_fees_x));;
 pairpair..lp_fee_ylp_fee_y == safe_math safe_math::::sub_u64_cape_zerosub_u64_cape_zero((pairpair..lp_fee_ylp_fee_y,, total_fees_y total_fees_y));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

58/68

LPA-15 Incorrect Role Verification in add_rewarder() Function

Severity: Medium

Status: Fixed

Code Location:

sources/lb_pair.move#1451

Descriptions:

The contract defines three roles: OPERATOR_ROLE , REWARD_ROLE , and

PROTOCOL_FEE_ROLE .

 // Initialize roles table// Initialize roles table
 letlet roles roles == table table::::newnew<<u8u8,, VecSetVecSet<<addressaddress>>>>((ctxctx));;
 tabletable::::addadd((&&mut rolesmut roles,, OPERATOR_ROLEOPERATOR_ROLE,, vec_setvec_set::::emptyempty<<addressaddress>>(())));;
 tabletable::::addadd((&&mut rolesmut roles,, REWARD_ROLEREWARD_ROLE,, vec_setvec_set::::emptyempty<<addressaddress>>(())));;
 tabletable::::addadd((&&mut rolesmut roles,, PROTOCOL_FEE_ROLEPROTOCOL_FEE_ROLE,, vec_setvec_set::::emptyempty<<addressaddress>>(())));;

However, in the add_rewarder() function, the protocol checks for OPERATOR_ROLE

instead of REWARD_ROLE . The role verification should be updated to check for

REWARD_ROLE .

 publicpublic fun add_rewarder fun add_rewarder<<XX,, YY,, RewardCoinRewardCoin>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 ctxctx:: &&TxContextTxContext,,
)) {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 configconfig::::check_operator_rolecheck_operator_role((configconfig,, tx_contexttx_context::::sendersender((ctxctx))));;

 letlet pair_id pair_id == object object::::idid((pairpair));;
 rewarderrewarder::::add_rewarderadd_rewarder<<RewardCoinRewardCoin>>((&&mut pairmut pair..reward_managerreward_manager));;

 eventevent::::emitemit((RewarderAddedEventRewarderAddedEvent {{

59/68

 pairpair:: pair_id pair_id,,
 rewarder_typerewarder_type:: type_name type_name::::getget<<RewardCoinRewardCoin>>(()),,
 }}));;
 }}

Suggestion:

It is recommended to update the add_rewarder() function to verify REWARD_ROLE instead

of OPERATOR_ROLE .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

60/68

LPA-16 Inconsistent Lock Timestamp Handling Prevents
Adding Liquidity

Severity: Minor

Status: Fixed

Code Location:

sources/lb_pair.move#923

Descriptions:

In the add_liquidity() function, the protocol verifies that lb_position::get_lock_until(position)

== 0 .

 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 assertassert!!((
 objectobject::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair)) ==== lb_position lb_position::::pair_idpair_id((positionposition)),,
 E_POSITION_MISMATCHE_POSITION_MISMATCH,,
));;
 assertassert!!((lb_positionlb_position::::get_lock_untilget_lock_until((positionposition)) ==== 00,, E_POSITION_LOCKEDE_POSITION_LOCKED));;

However, in the open_position() function, the lock_until_timestamp is specified by the

user. If the user does not input 0, they may not be able to add liquidity later.

 publicpublic fun open_position fun open_position<<XX,, YY>>((
 configconfig:: &&GlobalConfigGlobalConfig,,
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 lock_until_timestamplock_until_timestamp:: u64 u64,,
 ctxctx:: &&mut mut TxContextTxContext,,
)):: LBPositionLBPosition {{
 configconfig::::checked_package_versionchecked_package_version((configconfig));;
 assertassert!!((!!pairpair..is_pauseis_pause,, E_PAIR_PAUSEDE_PAIR_PAUSED));;
 letlet pair_id pair_id == object object::::idid<<LBPairLBPair<<XX,, YY>>>>((pairpair));;
 letlet position position == lb_position lb_position::::open_positionopen_position<<XX,, YY>>((
 &&mut pairmut pair..position_managerposition_manager,,
 pair_idpair_id,,

61/68

 lock_until_timestamplock_until_timestamp,,
 ctxctx,,
));;

Suggestion:

It is recommended to ensure that open_position() enforces lock_until_timestamp = 0

when creating a new position,

Resolution:

This issue has been fixed. The client has adopted our suggestions.

62/68

LPA-17 Use && instead of ||

Severity: Minor

Status: Fixed

Code Location:

sources/lb_pair.move#2343-2348

Descriptions:

In the set_static_fee_parameters_internal() function, the validation logic currently uses the

|| operator, meaning the check passes if any one of the input parameters meets the

condition.

 /// Helper functions/// Helper functions
 fun set_static_fee_parameters_internalfun set_static_fee_parameters_internal<<XX,, YY>>((
 pairpair:: &&mut mut LBPairLBPair<<XX,, YY>>,,
 base_factorbase_factor:: u32 u32,,
 filter_periodfilter_period:: u16 u16,,
 decay_perioddecay_period:: u16 u16,,
 reduction_factorreduction_factor:: u16 u16,,
 variable_fee_controlvariable_fee_control:: u32 u32,,
 protocol_shareprotocol_share:: u16 u16,,
 max_volatility_accumulatormax_volatility_accumulator:: u32 u32,,
 ctxctx:: &&TxContextTxContext,,
)) {{
 assertassert!!((
 base_factor base_factor !=!= 00 |||| filter_period filter_period !=!= 00 |||| decay_period decay_period !=!= 00 ||||
 reduction_factor reduction_factor !=!= 00 |||| variable_fee_control variable_fee_control !=!= 00 ||||
 protocol_share protocol_share !=!= 00 |||| max_volatility_accumulator max_volatility_accumulator !=!= 00,,
 E_INVALID_STATIC_FEE_PARAMSE_INVALID_STATIC_FEE_PARAMS,,
));;

63/68

However, this is incorrect. The function should use the && operator to ensure that all

input parameters satisfy the required conditions before proceeding.

Suggestion:

It is recommended to use && instead of ||

Resolution:

This issue has been fixed. The client has adopted our suggestions.

64/68

LPA-18 Redundant Calculation of lp_comp_fee_x in
update_bin() Function

Severity: Informational

Status: Fixed

Code Location:

sources/lb_pair.move#1376-1396

Descriptions:

In the update_bin() function, the protocol initializes composition_fee_x and

composition_fee_y to 0.

 letlet amounts_in_to_bin_x amounts_in_to_bin_x == amounts_in_x amounts_in_x;;
 letlet amounts_in_to_bin_y amounts_in_to_bin_y == amounts_in_y amounts_in_y;;
 letlet composition_fee_x composition_fee_x == 0u64 0u64;;
 letlet composition_fee_y composition_fee_y == 0u64 0u64;;

If fee_x > 0 || fee_y > 0 , it calculates: lp_fee_x = fee_x - protocol_fee_x lp_fee_y =

fee_y - protocol_fee_y

 // Update bin fee growth for LP fees// Update bin fee growth for LP fees
 letlet lp_fee_x lp_fee_x == safe_math safe_math::::sub_u64sub_u64((fee_xfee_x,, protocol_fee_x protocol_fee_x));;
 letlet lp_fee_y lp_fee_y == safe_math safe_math::::sub_u64sub_u64((fee_yfee_y,, protocol_fee_y protocol_fee_y));;
 update_bin_fee_growthupdate_bin_fee_growth((&&mut binmut bin,, lp_fee_x lp_fee_x,, lp_fee_y lp_fee_y));;

If fee_x == 0 && fee_y == 0 , the protocol only verifies the amounts for non-active bins.

After that, it calculates lp_comp_fee_x as follows:

If composition_fee_x > 0 , then lp_comp_fee_x = composition_fee_x - protocol_share

Otherwise, lp_comp_fee_x = 0

 // Calculate composition fees for LP// Calculate composition fees for LP
 letlet lp_comp_fee_x lp_comp_fee_x == ifif ((composition_fee_x composition_fee_x >> 00)) {{

65/68

 letlet protocol_share protocol_share ==
pair_parameter_helperpair_parameter_helper::::get_protocol_shareget_protocol_share((&&pairpair..parametersparameters));;
 letlet protocol_fee protocol_fee == fee_helper fee_helper::::get_protocol_fee_amountget_protocol_fee_amount((
 composition_fee_xcomposition_fee_x,,
 ((protocol_share protocol_share asas u64 u64)),,
));;
 safe_mathsafe_math::::sub_u64sub_u64((composition_fee_xcomposition_fee_x,, protocol_fee protocol_fee))
 }} elseelse {{
 00
 }};;

 letlet lp_comp_fee_y lp_comp_fee_y == ifif ((composition_fee_y composition_fee_y >> 00)) {{
 letlet protocol_share protocol_share ==
pair_parameter_helperpair_parameter_helper::::get_protocol_shareget_protocol_share((&&pairpair..parametersparameters));;
 letlet protocol_fee protocol_fee == fee_helper fee_helper::::get_protocol_fee_amountget_protocol_fee_amount((
 composition_fee_ycomposition_fee_y,,
 ((protocol_share protocol_share asas u64 u64)),,
));;
 safe_mathsafe_math::::sub_u64sub_u64((composition_fee_ycomposition_fee_y,, protocol_fee protocol_fee))
 }} elseelse {{
 00
 }};;

Issue: When fee_x > 0 || fee_y > 0 , lp_comp_fee_x ends up being equal to lp_fee_x . When

fee_x == 0 && fee_y == 0 , lp_comp_fee_x is set to 0.

Therefore, the additional calculation of lp_comp_fee_x is redundant and unnecessary.

Suggestion:

It is recommended to refactor the update_bin() function to remove the redundant

calculation of lp_comp_fee_x/y

Resolution:

This issue has been fixed. The client has adopted our suggestions.

66/68

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

67/68

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

68/68

	928_page1.pdf
	928_page2.pdf

