
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Ferra CLMM

Fri Sep 26 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Ferra CLMM Audit Report

1 Executive Summary

1.1 Project Information

Description This is a Concentrated Liquidity Market Maker (CLMM)
implementation on the Sui blockchain, providing efficient
automated market making with concentrated liquidity
positions.

Type DEX

Auditors MoveBit

Timeline Tue Aug 05 2025 - Mon Aug 25 2025

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Ferra-Labs/ferra-clmm

Commits 9c2f3b6df009f892c97afc12d3fc579a39d04eb8
07a29d10525e75d35bd4791d7160528214dea5de
d23097aebde760ea40b21710f7c7c2385bd303af
f5a09aca59cd32893b71e396938cf7628c2f5c6a
86d2deb4634c7ab9b46f99894ed9887b1d989bfe
7b66118e00201de2e91d5a99f93e77b1f5049324

1/19

https://github.com/Ferra-Labs/ferra-clmm
https://github.com/Ferra-Labs/ferra-clmm/tree/9c2f3b6df009f892c97afc12d3fc579a39d04eb8
https://github.com/Ferra-Labs/ferra-clmm/tree/07a29d10525e75d35bd4791d7160528214dea5de
https://github.com/Ferra-Labs/ferra-clmm/tree/d23097aebde760ea40b21710f7c7c2385bd303af
https://github.com/Ferra-Labs/ferra-clmm/tree/f5a09aca59cd32893b71e396938cf7628c2f5c6a
https://github.com/Ferra-Labs/ferra-clmm/tree/86d2deb4634c7ab9b46f99894ed9887b1d989bfe
https://github.com/Ferra-Labs/ferra-clmm/tree/7b66118e00201de2e91d5a99f93e77b1f5049324

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ACL sources/acl.move 337886a9fb66058c0409e5a5a7f92
a4e5e392897

FAC sources/factory.move 3aa6809ccdcaa1821cf79d31a1b4c
8d3ad56bf6e

POS sources/position.move 959b483e05c1936c32f5b6545d193
d0d8f952f74

REW sources/rewarder.move c128ab36f8e2c99ecf5a69bd6fe212
18abc82a68

CON sources/config.move c946a3d52c61498aa9ce9769d545
5cb0c342ee7e

POO sources/pool.move 96a55788d305357415dfe6e94afde
b22a4a2cfed

UTI sources/utils.move 22c2f32fe02418e858eae6bbf76daf
9609b2addb

CMA sources/math/clmm_math.move cb67ee2eace9d5b9ad03dc26b884
e049e8bfe997

TMA sources/math/tick_math.move aa89330ecee04527f55b2922428d9
3846b27d73f

TIC sources/tick.move d6480476c749df6d91eb51a05177
97a4c823e43c

2/19

ACL sources/acl.move 18c00b107263e8c5ad46377b86f51
3abe1b03bee

FAC sources/factory.move c13092618deae69586c139f48731a
2576dd1cdb0

POS sources/position.move 56a660683fd29316ebd870d5230d
cd5f90cdba18

REW sources/rewarder.move f48fafcf4badcac10ca624b43211a8f
e3f316d3c

CON sources/config.move 11f02d8642208ea6d632a8faaf8c4
59423c6a172

POO sources/pool.move 169601304215e6c1ed65fb9e42a64
f955a9804ad

UTI sources/utils.move 8b176a48c56aa5ab4ceee1a30a49
32b2d3580e5e

TIC sources/tick.move a4fc9139087486483bca3da33a038
d2b892e0056

3/19

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 6 1

Informational 2 2 0

Minor 1 1 0

Medium 4 3 1

Major 0 0 0

Critical 0 0 0

4/19

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

5/19

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/19

2 Summary

This report has been commissioned by Ferra to identify any potential issues and
vulnerabilities in the source code of the Ferra CLMM smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

CON-1 Centralization Risk Medium Fixed

CON-2 Lack of Events Emit Informational Fixed

FAC-1 Incomplete Token Whitelist
Checking

Medium Acknowledged

POO-1 Precision Loss in Reward
Calculation

Medium Fixed

POO-2 Missing Check for lock_until Minor Fixed

POO-3 Incorrect Event Parameter Informational Fixed

UTI-1 Precision Loss in str() Medium Fixed

7/19

3 Participant Process

Here are the relevant actors with their respective abilities within the Ferra CLMM Smart
Contract :
Admin

Admin can update package version through update_package_version() .

Admin can withdraw rewards emergently through emergent_withdraw() .

Admin can update protocol fee rate through update_protocol_fee_rate() .

Admin can delete fee tiers through delete_fee_tier() .

Admin can add whitelist tokens through add_whitelist_token() .

Admin can remove whitelist tokens through delete_whitelist_token() .

Admin can pause the pool through pause() .

Admin can unpause the pool through unpause() .

Admin can update fee rate through update_fee_rate() .

Admin can update position URL through update_position_url() .

Admin can set display metadata through set_display() .

Admin can collect protocol fees through collect_protocol_fee() .

Admin can update emission through update_emission() .

Admin can initialize rewarder through initialize_rewarder() .

Admin can add or update fee tier through the add_update_fee_tier() function.

Admin can set whether creating a pair is allowed through the set_allow_create_pair()

function.

Admin can set the upgrade capability through the set_upgrade_cap() function.

Admin can set the publisher through the set_publisher() function.

8/19

Admin can create governance proposals through the propose() function.

Admin can vote on proposals through the vote() function.

Admin can execute approved proposals through the execute() function.

Admin can cancel proposals through the cancel() function.

User

User can open a position through open_position() .

User can add liquidity through add_liquidity() .

User can add fixed amount liquidity through add_liquidity_fix_coin() .

User can remove liquidity through remove_liquidity() .

User can lock position through lock_position() .

User can close position through close_position() .

User can collect fees through collect_fee() .

User can collect rewards through collect_reward() .

User can perform flash loan through flash_loan() .

User can perform flash swap through flash_swap() .

User can repay flash loan through repay_flash_loan() .

User can repay flash swap through repay_flash_swap() .

User can repay add liquidity through repay_add_liquidity() .

User can create a new pool through create_pool() .

User can deposit rewards through deposit_reward() .

9/19

4 Findings

CON-1 Centralization Risk

Severity: Medium

Status: Fixed

Code Location:

sources/config.move;

sources/pool.move

Descriptions:

Centralization risk was identified in the smart contract:

Admin can pause the pool through the pause() function.

Admin can unpause the pool through the unpause() function.

Admin can update fee rate through the update_fee_rate() function.

Admin can withdraw rewards emergently through the emergent_withdraw() function.

Admin can update protocol fee rate through update_protocol_fee_rate() .

Admin can add roles through add_role() .

Admin can remove roles through remove_role() .

Admin can set roles through set_roles() .

Suggestion:

It is recommended that measures be taken to reduce the risk of centralization, such as a

multi-signature mechanism.

Resolution:

This issue has been fixed. The client use a proposal mechanism for administrator

configuration operations.

10/19

CON-2 Lack of Events Emit

Severity: Informational

Status: Fixed

Code Location:

sources/config.move#180,189

Descriptions:

Some functions in the contract lack events logging, which is essential for blockchain

transparency, off-chain data tracking, and frontend integration. Event logs allow external

systems to monitor contract activities without querying the blockchain state directly.

add_whitelist_token()

delete_whitelist_token()

Suggestion:

It is recommended to add event emission for this operations.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/19

FAC-1 Incomplete Token Whitelist Checking

Severity: Medium

Status: Acknowledged

Code Location:

sources/factory.move#89

Descriptions:

Incomplete token whitelist checking logic exists in the create_pool function, allowing

attackers to create liquidity pools containing malicious tokens. An attacker could pair a

malicious token (e.g., one containing a backdoor, reentrancy attack, or infinite minting

vulnerability) with any whitelisted token to create a pool.

 assertassert!!((
 configconfig::::is_in_whitelistis_in_whitelist<<CoinTypeACoinTypeA>>((global_configglobal_config)) ||||
 configconfig::::is_in_whitelistis_in_whitelist<<CoinTypeBCoinTypeB>>((global_configglobal_config)),,
 11,,
));;

Suggestion:

It is recommended that the logic be modified to require both tokens to be on the whitelist.

12/19

POO-1 Precision Loss in Reward Calculation

Severity: Medium

Status: Fixed

Code Location:

sources/pool.move#392,527,585,611,759,808,1086,1258

Descriptions:

The reward calculation mechanism truncates fractional seconds during milliseconds-to-

seconds conversion, leading to systematic under-distribution of rewards. This precision loss

occurs due to integer division before multiplication, discarding remainders in each

calculation cycle.

 rewarderrewarder::::settlesettle((
 &&mut poolmut pool..rewarder_managerrewarder_manager,,
 poolpool..liquidityliquidity,,
 clockclock::::timestamp_mstimestamp_ms((clockclock)) // 10001000,,
));;

 publicpublic((friendfriend)) fun fun settlesettle((
 managermanager:: &&mut mut RewarderManagerRewarderManager,,
 liquidityliquidity:: u128 u128,,
 current_timecurrent_time:: u64 u64
)) {{
 letlet last_time last_time == manager manager..last_updated_timelast_updated_time;;
 managermanager..last_updated_timelast_updated_time == current_time current_time;;

Suggestion:

It is recommended that a variable be added to the reward calculation to record the number

of lost milliseconds. The next reward calculation should then be corrected to avoid missing

rewards each cycle.

13/19

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/19

POO-2 Missing Check for lock_until

Severity: Minor

Status: Fixed

Code Location:

sources/pool.move#361

Descriptions:

The open_position function lacks a lock_until check. If lock_until is less than the current

time, it will be meaningless. Alternatively, if lock_until is too large, the position may never

be unlocked.

Suggestion:

It is recommended to check that lock_until is within a reasonable range.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/19

POO-3 Incorrect Event Parameter

Severity: Informational

Status: Fixed

Code Location:

sources/pool.move#1306

Descriptions:

In the flash_swap_internal() function, the values of the parameters before_sqrt_price and

after_sqrt_price in SwapEvent are the same, causing event to be logged incorrectly.

Suggestion:

It is recommended to modify the value of the parameter before_sqrt_price in SwapEvent .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/19

UTI-1 Precision Loss in str()

Severity: Medium

Status: Fixed

Code Location:

sources/utils.move#16

Descriptions:

In the ferra_clmm::utils::str() function, the line let digit = (num as u8) % 10; incorrectly

truncates the num value to a u8 before performing the modulo operation. This u8 cast

causes an overflow and truncation for any num value greater than 255, leading to an

incorrect digit extraction.

The function incorrectly returns 250 instead of the correct 256 :

(256 as u8) is 0 , 0 % 10 = 0 , digits gets 0 ;

num becomes 25 , (25 as u8) is 25 , 25 % 10 = 5 , digits gets 5 ;

num becomes 2 . (2 as u8) is 2 . 2 % 10 = 2 . digits gets 2 .

Result: 250 .

Suggestion:

The u8 cast in the digit extraction logic should be removed or reordered to ensure the

modulo operation is performed on the u64 value before any truncation. The result of num

% 10 (which will always be between 0 and 9) can then be safely cast to u8 .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/19

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

18/19

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

19/19

	938_page1.pdf
	938_page2.pdf

