
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Solido

Fri Aug 08 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Solido Audit Report

1 Executive Summary

1.1 Project Information

Description A liquid staking protocol built on the Supra blockchain,
enabling users to stake assets across multiple validators
while maintaining liquidity through tokenized shares

Type DeFi

Auditors MoveBit

Timeline Wed Jul 30 2025 - Fri Aug 08 2025

Languages Move

Platform Supra

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Solido-Money/flow-protocol/

Commits 458fdb1f981168c53d0b3b1e3d47fcce675cc707
371e1988974453da66ff2d4f983d0182c000d9eb

1/18

https://github.com/Solido-Money/flow-protocol/
https://github.com/Solido-Money/flow-protocol//tree/458fdb1f981168c53d0b3b1e3d47fcce675cc707
https://github.com/Solido-Money/flow-protocol//tree/371e1988974453da66ff2d4f983d0182c000d9eb

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml 6f9dc6ec83c0b3becb88e3cbdfe7b
4d3dcd32920

SCO sources/strategy_core.move 227054cf6167ccd162352ec0040b1
cd1fb1cc3f6

SDE sources/strategy_delegation.move b262dc2cfa3ccbabc3e052ac0efed
c4f2fb26f3d

SVA sources/strategy_validator.move 286be9ac5d565097c5e7701b4a6f2
4c741c3cb29

VAU sources/vault.move aa3b52f3a7db2c2b9b06eea33886
3daee2a030dc

SST sources/strategy_staking.move 1130b09c885bc31b058942fefaba1
18115ac8a5d

2/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 5 0

Informational 2 2 0

Minor 2 2 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/18

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/18

2 Summary

This report has been commissioned by Solido to identify any potential issues and
vulnerabilities in the source code of the Solido smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

SCO-1 Redundant Calculation and Unused
Variable in rebalance

Minor Fixed

SCO-2 add_validator and
remove_validator Repeatedly

Checking The Code

Minor Fixed

SCO-3 ERR_NOT_INITIALIZED Not Used Informational Fixed

SDE-1 Use public(friend) instead of
public

Informational Fixed

VAU-1 Potential DoS via Unbounded
Iteration in claim_withdrawal

Medium Fixed

6/18

3 Participant Process

Here are the relevant actors with their respective abilities within the Solido Smart Contract :

Admin

withdraw_unlocked : Withdraw the funds unlocked by the policy from all registered

validators

pause : Suspend the vault

unpause :Lift the suspension of the vault

set_tvl_limit : Set the upper limit of the total locked value of the vault.

set_performance_fee : Set the performance rate charged from the strategy's earnings

harvest : Used to trigger the strategy for revenue harvesting and asset rebalancing

sync_assets :Synchronize the total assets recorded inside the vault with the actual

asset balance in the vault resource account

set_withdraw_delay :Set or update the time delay between when a user initiates a

withdrawal and when they can receive their assets.

set_fee_recipient : Change the address for receiving all fees

set_withdrawal_fee : Used to set or update the handling fee rate charged when

withdrawing funds

Strategy

add_validator : Add the new validator to the system's authorized validator list

remove_validator : Remove a validator from the system's list of authorized validators

delegate : Entrust a specified quantity of assets to a validator

undelegate : Cancel the delegation from a validator

User

7/18

deposit : Users deposit the specified amount of assets into the vault and receive the

corresponding amount of share tokens at the current exchange rate

deposit_for : User deposits the specified quantity of assets into the vault and sends

the obtained share tokens to the designated address.

deposit_with_slippage : User deposits assets and provides an acceptable minimum

share quantity

withdraw : User requests to withdraw a specified quantity of assets

withdraw_to : User requests to extract a specified quantity of assets and send these

assets to the designated address.

claim_withdrawal :After the withdrawal delay period, users call this function to

withdraw the assets they previously requested

redeem : Users can redeem the corresponding amount of assets by destroying the

specified number of share tokens

redeem_to : User destroys the specified quantity of share tokens and sends the

redeemed underlying assets to the designated address.

initialize_account : Ability to allow any user to register for their own account to receive

underlying assets and share tokens

8/18

4 Findings

SCO-1 Redundant Calculation and Unused Variable in
rebalance

Severity: Minor

Status: Fixed

Code Location:

sources/strategy_core.move#196

Descriptions:

The direct_settle_amount variable is calculated within the rebalance function but is never

used in any subsequent logic. This constitutes dead code, which reduces code clarity.

 // Handle delay transfer amount and update pending_withdrawals// Handle delay transfer amount and update pending_withdrawals
 ifif ((delay_transfer_amount delay_transfer_amount >> 00)) {{
 // Check that delay_transfer_amount >= unlocked_amount// Check that delay_transfer_amount >= unlocked_amount
 assertassert!!((delay_transfer_amount delay_transfer_amount >=>= unlocked_amount unlocked_amount,,
ERR_INSUFFICIENT_DELAY_TRANSFERERR_INSUFFICIENT_DELAY_TRANSFER));;
 letlet direct_settle_amount direct_settle_amount == delay_transfer_amount delay_transfer_amount -- unlocked_amount unlocked_amount;;
 // Check that we have enough liquid funds after all operations// Check that we have enough liquid funds after all operations
 letlet current_liquid_balance current_liquid_balance == coin coin::::balancebalance<<AssetTypeAssetType>>((resource_addrresource_addr));;
 assertassert!!((current_liquid_balance current_liquid_balance >=>= delay_transfer_amount delay_transfer_amount,,
ERR_INSUFFICIENT_FUNDSERR_INSUFFICIENT_FUNDS));;

 // Transfer the specified amount to delayed withdrawal account// Transfer the specified amount to delayed withdrawal account
 letlet delayed_withdrawal_addr delayed_withdrawal_addr == {{
 letlet core_info core_info == borrow_global borrow_global<<CoreInfoCoreInfo>>((@vault@vault));;
 core_infocore_info..delayed_withdrawal_addrdelayed_withdrawal_addr
 }};;

Suggestion:

Remove the line that declares the direct_settle_amount variable.

Resolution:

9/18

This issue has been fixed. The client has adopted our suggestions.

10/18

SCO-2 add_validator and remove_validator Repeatedly
Checking The Code

Severity: Minor

Status: Fixed

Code Location:

sources/strategy_core.move#281-302

Descriptions:

In the 'add_validator' and 'remove_validator' functions, the same administrator permission

verification logic is repeated

 publicpublic entry fun entry fun add_validatoradd_validator((
 adminadmin:: &&signersigner,,
 validatorvalidator:: address address
)) {{
 letlet admin_addr admin_addr == signer signer::::address_ofaddress_of((adminadmin));;
 assertassert!!((admin_addr admin_addr ==== @vault @vault,, ERR_NOT_ADMINERR_NOT_ADMIN));;

 // Add validator// Add validator
 strategy_validatorstrategy_validator::::add_validatoradd_validator((adminadmin,, validator validator));;
 }}

 publicpublic((friendfriend)) fun fun add_validatoradd_validator((
 adminadmin:: &&signersigner,,
 validatorvalidator:: address address
)) acquires acquires ValidatorRegistryValidatorRegistry {{
 letlet admin_addr admin_addr == signer signer::::address_ofaddress_of((adminadmin));;
 assertassert!!((admin_addr admin_addr ==== @vault @vault,, ERR_NOT_ADMINERR_NOT_ADMIN));;

 letlet registry registry == borrow_global_mut borrow_global_mut<<ValidatorRegistryValidatorRegistry>>((@vault@vault));;

Suggestion:

11/18

Delete the duplicate verification logic

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/18

SCO-3 ERR_NOT_INITIALIZED Not Used

Severity: Informational

Status: Fixed

Code Location:

sources/strategy_core.move#20;

sources/strategy_staking.move#18

Descriptions:

The ERR_NOT_INITIALIZED error code parameter is not used

constconst ERR_NOT_INITIALIZEDERR_NOT_INITIALIZED:: u64 u64 == 33;;

Suggestion:

Delete the redundant code

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/18

SDE-1 Use public(friend) instead of public

Severity: Informational

Status: Fixed

Code Location:

sources/strategy_delegation.move#96

Descriptions:

The undelegate() function is invoked through the strategy_staking contract. It is

recommended to change the visibility of the undelegate() function to public(friend) .

Similarly, the same recommendation applies to the withdraw_unlocked() function.

 ifif ((amount amount >> 00)) {{
 // Undelegate assets from validator// Undelegate assets from validator
 strategy_delegationstrategy_delegation::::undelegateundelegate<<AssetTypeAssetType>>((strategy_signerstrategy_signer,, validator validator,, amount amount));;

 // Emit unstaking event// Emit unstaking event
 eventevent::::emitemit((AssetsUnstakedEventAssetsUnstakedEvent {{
 validatorvalidator,,
 amountamount,,
 timestamptimestamp:: timestamp timestamp::::now_secondsnow_seconds(())
 }}));;
 }};;

Suggestion:

It is recommended to change the visibility of the undelegate() function to public(friend) .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/18

VAU-1 Potential DoS via Unbounded Iteration in
claim_withdrawal

Severity: Medium

Status: Fixed

Code Location:

sources/vault.move#553-658

Descriptions:

The claim_withdrawal function iterates through all of a user's withdrawal requests stored

in the user_requests.request_ids vector. While processed requests are marked as

processed = true , they are never removed from this vector or the underlying requests

table.

This design flaw allows the request_ids vector to grow indefinitely with each new withdrawal

request. Consequently, the gas cost for calling claim_withdrawal increases linearly with the

number of historical requests, which can lead to a DoS condition where transactions fail due

to exceeding the gas limit, preventing the user from claiming their funds.

 whilewhile ((i i << request_ids_len request_ids_len)) {{
 letlet request_id request_id == **vectorvector::::borrowborrow((&&user_requestsuser_requests..request_idsrequest_ids,, i i));;
 ifif ((tabletable::::containscontains((&&user_requestsuser_requests..requestsrequests,, request_id request_id)))) {{
 letlet request request == table table::::borrow_mutborrow_mut((&&mut user_requestsmut user_requests..requestsrequests,, request_id request_id));;
 ifif ((!!requestrequest..processedprocessed &&&& current_time current_time >=>= request request..request_timerequest_time ++
requestrequest..delay_at_requestdelay_at_request)) {{
 total_claimable total_claimable == total_claimable total_claimable ++ request request..assetsassets;;
 requestrequest..processedprocessed == truetrue;;
 }};;
 }};;
 i i == i i ++ 11;;
 }};;

Suggestion:

15/18

Modify the function to remove processed requests after they are claimed.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

17/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

18/18

	925_page1.pdf
	925_page2.pdf

