S

Solido
Audit Report

G MOVEBIT

contact@bitslab.xyz https://twitter.com/movebit_

Fri Aug 08 2025


https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Solido Audit Report

1 Executive Summary

1.1 Project Information

Description Aliquid staking protocol built on the Supra blockchain,
enabling users to stake assets across multiple validators
while maintaining liquidity through tokenized shares

Type DeFi

Auditors MoveBit

Timeline Wed Jul 30 2025 - Fri Aug 08 2025

Languages Move

Platform Supra

Methods Architecture Review, Unit Testing, Manual Review
Source Code https://github.com/Solido-Money/flow-protocol/
Commits 458fdb1f981168c53d0b3b1e3d47fcce675cc707

371e1988974453da66ff2d4f983d0182c000d%eb

1/18


https://github.com/Solido-Money/flow-protocol/
https://github.com/Solido-Money/flow-protocol//tree/458fdb1f981168c53d0b3b1e3d47fcce675cc707
https://github.com/Solido-Money/flow-protocol//tree/371e1988974453da66ff2d4f983d0182c000d9eb

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID

MOV

SCO

SDE

SVA

VAU

SST

File

Move.toml

sources/strategy_core.move

sources/strategy_delegation.move

sources/strategy_validator.move

sources/vault.move

sources/strategy_staking.move

2/18

SHA-1 Hash

6f9dc6ec83c0b3becbh88e3cbdfe7b
4d3dcd32920

227054cf6167ccd162352ec0040b1
cd1fb1cc3f6

b262dc2cfa3ccbabc3e052ac0efed
c4f2fb26f3d

286be9%ac5d565097c5e7701b4a6f2
4c741¢c3cbh29

aa3b52f3a7db2c2b9b06eea33886
3daee2a030dc

1130b09¢c885bc31b058942fefaba1
18115ac8a5d



1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 5 5 0
Informational 2 2 0
Minor 2 2 0
Medium 1 1 0
Major 0 0 0

Critical 0 0 0

3/18



1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence

e Timestamp dependence

¢ Integer overflow/underflow by bit operations
e Number of rounding errors

e Denial of service / logical oversights

e Access control

e Centralization of power

e Business logic contradicting the specification
e Code clones, functionality duplication

e (Gasusage

e Arbitrary token minting

e Unchecked CALL Return Values

e The flow of capability

e Witness Type

4/18



1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process
e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both
the audit team and the code owner in a timely manner.

5/18



2 Summary

This report has been commissioned by Solido to identify any potential issues and

vulnerabilities in the source code of the Solido smart contract, as well as any contract

dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

SCO-1

SCO-2

SCO-3

SDE-1

VAU-1

Title Severity

Redundant Calculation and Unused Minor
Variable in rebalance

add_validator and Minor
remove_validator Repeatedly

Checking The Code

ERR_NOT_INITIALIZED Not Used Informational
Use public(friend) instead of Informational
public

Potential DoS via Unbounded Medium

Iteration in claim_withdrawal

6/18

Status

Fixed

Fixed

Fixed

Fixed

Fixed



3 Participant Process

Here are the relevant actors with their respective abilities within the Solido Smart Contract :

Admin

e withdraw_unlocked : Withdraw the funds unlocked by the policy from all registered
validators

e pause :Suspend the vault

e unpause :Lift the suspension of the vault

e set_tvl_limit : Set the upper limit of the total locked value of the vault.

e set_performance_fee : Set the performance rate charged from the strategy's earnings
e harvest : Used to trigger the strategy for revenue harvesting and asset rebalancing

e sync_assets :Synchronize the total assets recorded inside the vault with the actual

asset balance in the vault resource account

set_withdraw_delay :Set or update the time delay between when a user initiates a

withdrawal and when they can receive their assets.

set_fee_recipient : Change the address for receiving all fees

set_withdrawal_fee : Used to set or update the handling fee rate charged when
withdrawing funds

Strategy
e add_validator : Add the new validator to the system's authorized validator list
e remove_validator : Remove a validator from the system's list of authorized validators
e delegate : Entrust a specified quantity of assets to a validator

e undelegate : Cancel the delegation from a validator

User

7/18



deposit : Users deposit the specified amount of assets into the vault and receive the
corresponding amount of share tokens at the current exchange rate

deposit_for : User deposits the specified quantity of assets into the vault and sends
the obtained share tokens to the designated address.

deposit_with_slippage : User deposits assets and provides an acceptable minimum
share quantity

withdraw : User requests to withdraw a specified quantity of assets

withdraw_to : User requests to extract a specified quantity of assets and send these
assets to the designated address.

claim_withdrawal :After the withdrawal delay period, users call this function to
withdraw the assets they previously requested

redeem : Users can redeem the corresponding amount of assets by destroying the
specified number of share tokens

redeem_to : User destroys the specified quantity of share tokens and sends the
redeemed underlying assets to the designated address.

initialize_account : Ability to allow any user to register for their own account to receive
underlying assets and share tokens

8/18



4 Findings

SCO-1 Redundant Calculation and Unused Variable in
rebalance

Severity: Minor
Status: Fixed

Code Location:

sources/strategy_core.move#196

Descriptions:
The direct_settle_amount variable is calculated within the rebalance function but is never

used in any subsequent logic. This constitutes dead code, which reduces code clarity.

if (delay_transfer_amount > 0) {

assert!(delay_transfer_amount >= unlocked_amount,
ERR_INSUFFICIENT_DELAY_TRANSFER);
let direct_settle_amount = delay_transfer_amount - unlocked_amount;

let current_liquid_balance = coin::balance<AssetType>(resource_addr);

assert!(current_liquid_balance >= delay_transfer_amount,
ERR_INSUFFICIENT_FUNDYS);

let delayed_withdrawal_addr = {
let core_info = borrow_global<Corelnfo>(@vault);
core_info.delayed_withdrawal_addr

h

Suggestion:

Remove the line that declares the direct_settle_amount variable.

Resolution:

9/18



This issue has been fixed. The client has adopted our suggestions.

10/18



SCO-2 add_validator and remove_validator Repeatedly
Checking The Code

Severity: Minor
Status: Fixed

Code Location:

sources/strategy_core.move#281-302

Descriptions:
In the 'add_validator' and 'remove_validator' functions, the same administrator permission

verification logic is repeated

public entry fun add_validator(
admin: &signer,
validator: address
){
let admin_addr = signer::address_of(admin);
assert!(admin_addr == @vault, ERR_NOT_ADMIN);

strategy_validator::add_validator(admin, validator);

}

public(friend) fun add_validator(
admin: &signer,
validator: address
) acquires ValidatorRegistry {
let admin_addr = signer::address_of(admin);
assert!(admin_addr == @vault, ERR_NOT_ADMIN);

let registry = borrow_global_mut<ValidatorRegistry>(@vault);

Suggestion:

11/18



Delete the duplicate verification logic

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/18



SCO-3 ERR_NOT_INITIALIZED Not Used

Severity: Informational
Status: Fixed

Code Location:
sources/strategy_core.move#20;

sources/strategy_staking.move#18

Descriptions:

The ERR_NOT_INITIALIZED error code parameter is not used

const ERR_NOT_INITIALIZED: u64 = 3;

Suggestion:

Delete the redundant code

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/18



SDE-1 Use public(friend) instead of public

Severity: Informational
Status: Fixed

Code Location:

sources/strategy_delegation.move#96

Descriptions:
The undelegate() function is invoked through the strategy staking contract. Itis
recommended to change the visibility of the undelegate() function to public(friend) .

Similarly, the same recommendation applies to the withdraw_unlocked() function.

if @mount > 0) {

strategy_delegation::undelegate<AssetType>(strategy_signer, validator, amount);

event::emit(AssetsUnstakedEvent {
validator,
amount,
timestamp: timestamp::now_seconds()

Suggestion:

It is recommended to change the visibility of the undelegate() function to public(friend) .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/18



VAU-1 Potential DoS via Unbounded Iteration in
claim_withdrawal

Severity: Medium
Status: Fixed

Code Location:

sources/vault.move#553-658

Descriptions:

The claim_withdrawal function iterates through all of a user's withdrawal requests stored
in the user_requests.request_ids vector. While processed requests are marked as
processed = true , they are never removed from this vector or the underlying requests

table.

This design flaw allows the request_ids vector to grow indefinitely with each new withdrawal
request. Consequently, the gas cost for calling claim_withdrawal increases linearly with the
number of historical requests, which can lead to a DoS condition where transactions fail due

to exceeding the gas limit, preventing the user from claiming their funds.

while (i < request_ids_len) {
let request_id = *vector::borrow(&user_requests.request_ids, i);
if (table::contains(&user_requests.requests, request_id)) {
let request = table::borrow_mut(&mut user_requests.requests, request_id);
if (Irequest.processed && current_time >=request.request_time +
request.delay_at_request) {

total_claimable = total_claimable + request.assets;
request.processed = true;

Suggestion:

15/18



Modify the function to remove processed requests after they are claimed.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/18



Appendix 1

Issue Level

¢ Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

e Minor issues are general suggestions relevant to best practices and readability. They
don't post any direct risk. Developers are encouraged to fix them.

e Medium issues are non-exploitable problems and not security vulnerabilities. They
should be fixed unless there is a specific reason not to.

e Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

e Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Issue Status

e Fixed: The issue has been resolved.
e Partially Fixed: The issue has been partially resolved.

e Acknowledged: The issue has been acknowledged by the code owner, and the code
owner confirms it's as designed, and decides to keep it.

17/18



Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

Ve =T
N2 N
77 S\

. MOVEBIT /
N~

18/18



	925_page1.pdf
	925_page2.pdf

