
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Civitia

Fri Jun 27 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Civitia Audit Report

1 Executive Summary

1.1 Project Information

Description Civitia is an onchain game with mechanics similar to
Monopoly that invites users to collaborate and interact within
a unique social and financial ecosystem.

It is built on an independent rollup with the Initia stack.

Type Game

Auditors MoveBit

Timeline Wed May 28 2025 - Mon Jun 09 2025

Languages Move

Platform Others

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/civitia-labs/civitia-contracts

Commits 73fb65fcf2b6a585ba251068ba4528583ab40bdd
a20a72b53179ee3ce444200afbbab4baca1886ad

1/23

https://github.com/civitia-labs/civitia-contracts
https://github.com/civitia-labs/civitia-contracts/tree/73fb65fcf2b6a585ba251068ba4528583ab40bdd
https://github.com/civitia-labs/civitia-contracts/tree/a20a72b53179ee3ce444200afbbab4baca1886ad

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

CIV sources/civitia.move b6c3f8f0c380f661bb1951e45882c4
1410c7aa4d

LOB sources/lobby.move de0d327c215cf66bd730164f234e6
d403b2dd0a2

CIT sources/city.move f568411743490ed61c768aff47b4a
ea35f6b06a6

RV2 sources/random_v2.move 366574afcd392b61b33eda8296a1
27852904da7a

SQU sources/square.move 79920457f25eba84b5ac72ac1aa15
41393894272

EPO sources/epoch.move 42229628bd67ca4f7b741aa60ae3
03c77b200e21

FCN sources/founding_citizens_nfts.mo
ve

5d5c745bb77ca636f52dbbf25477c
288ee41feff

RES sources/residence.move ae327733dfb5f5f8a074992503a3e
871c4f2fe2a

BOA sources/board.move c455df20242e7c76be4ea867eb5ac
870362d2d15

CON sources/config.move 156e0a9bc89408442d44273d96b4
371ca9c9f71a

2/23

PLA sources/player.move 8b0937c288d1f24e39046846353b
93e054318ad7

BUN sources/bunker.move 694091f66a8a6221c2cee9d04ffc42
a9b83e1798

JAI sources/jail.move c491287112557539fbfed40f56aaa
733fba6e008

TAU sources/tax_authority.move a7fba61220e70bfa6a8ad2be689ad
ed1fa1a10b7

WCI sources/whitelist_city.move d761bad555d56550929732ffc9267
0f4ee0b1768

RAN sources/random.move 09ed62e368a2a8b6b5412d42bfa5
71da6f5e64f2

EGU sources/entry_guard.move e0a935213509652f3fa36d1324b8d
18cccf00d0a

VIP sources/vip.move 8665ea2984a6afc4b5986ff73869f0
34cdf10add

SEA sources/seasons.move 3d1d14ac89d1ba426ffe476f85ef19
21e89b9de7

TRE sources/treasury.move 897cbe98132c3b2ffd80a445b5c77
e247b9750d6

CCA sources/citizen_cards.move eeff098549d89ae876a0a27a93058
2a079d561e0

LEV sources/levels.move 3b495832e308498c5c5a90e19e98
e1413298a558

3/23

4/23

1.3 Issue Statistic

Item Count Fixed Partially Fixed Acknowledged

Total 8 3 1 4

Informational 5 2 0 3

Minor 1 0 0 1

Medium 1 0 1 0

Major 1 1 0 0

Critical 0 0 0 0

5/23

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

6/23

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/23

2 Summary

This report has been commissioned by Civitia to identify any potential issues and
vulnerabilities in the source code of the Civitia smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

BOA-1 Incorrect Start Point Detection
Logic

Major Fixed

EGU-1 Lack of Event Emit Informational Acknowledged

LEV-1 Incorrect Maximum Level
Validation in is_max_level
Function

Informational Acknowledged

RV2-1 Mixed Test and Production Code Minor Acknowledged

TRE-1 Centralization Risk Medium Partially Fixed

TRE-2 Improper Function Visibility in
Treasury Withdrawal

Informational Acknowledged

TRE-3 Redundant Metadata Validation in
Treasury Deposit Function

Informational Fixed

VIP-1 Missing Initialization Check in
finalize_stage Function

Informational Fixed

8/23

9/23

3 Participant Process

Here are the relevant actors with their respective abilities within the Civitia Smart Contract :
Owner

The owner can call the create_city_square function to create new city squares on the

board.

The owner can call the create_bunker_square function to create new bunker squares.

The owner can call the create_tax_authority_square function to create new tax

authority squares.

The owner can call the create_whitelist_city_square function to create new whitelist

city squares.

The owner can call the create_jail_square function to create new jail squares.

The owner can call the create_citizen_cards_square function to create new citizen

cards squares.

The owner can call the create_receive_silver_per_unit_card function to create silver

reward cards.

The owner can call the create_receive_tp_card function to create TP reward cards.

The owner can call the create_move_to_square_card function to create movement

cards.

The owner can call the create_pay_to_jackpot_card function to create jackpot payment

cards.

The owner can call the create_pay_to_jackpot_per_unit_card function to create per-

unit jackpot payment cards.

The owner can call the set_board_squares_by_id function to configure the board

layout.

The owner can call the set_radiation_levels function to configure city radiation

parameters.

10/23

The owner can call the set_landlord_levels function to configure landlord level

thresholds and multipliers.

The owner can call the set_city_mint_fee function to update city unit minting fees.

The owner can call the set_city_burn_fee function to update city unit burning fees.

The owner can call the set_bunker_burn_fee function to update bunker burning fees.

The owner can call the set_whitelist_city_base_rent function to update whitelist city

rent amounts.

The owner can call the set_jail_config function to update jail configuration

parameters.

The owner can call the set_tax_authority_config function to update tax authority

settings.

The owner can call the set_residence_pass_price function to update residence pass

pricing.

The owner can call the set_season_reward_distribution_for_top_positions function to

configure season reward distribution.

The owner can call the set_seasons_duration_in_epochs function to set season

duration.

The owner can call the set_current_season_end_epoch function to set the current

season end time.

The owner can call the set_fees_receiver function to update the fees receiver address.

The owner can call the set_game_master function to transfer ownership to a new

game master.

The owner can call the set_vip_stage_manager function to set the VIP stage manager

address.

The owner can call the set_is_halted function to halt or resume game operations.

The owner can call the set_lobby_params function to configure lobby parameters.

11/23

The owner can call the set_is_sale_active function to activate or deactivate NFT sales.

User

Users can call the initialize_player function to create their player account with a

referrer.

Users can call the roll_dice function to move across the game board.

Users can call the mint_current_city_unit function to purchase city units when

standing on city squares.

Users can call the burn_city_units function to sell their owned city units.

Users can call the claim_city_rents function to collect rent rewards from owned city

units.

Users can call the sabotage_city function to use Tax Points to negatively impact city

scores.

Users can call the buy_and_establish_residence function to purchase and establish

residency in cities.

Users can call the claim_whitelist_city_rents function to collect rent from whitelist city

units.

Users can call the claim_all_rents function to collect all available rent rewards.

Users can call the mint_current_bunker function to purchase bunkers when standing

on bunker squares.

Users can call the claim_bunker_rents function to collect rent rewards from owned

bunkers.

Users can call the sabotage_bunker function to use Tax Points to damage bunkers.

Users can call the file_current_ta_taxes function to file taxes when on Tax Authority

squares.

Users can call the pay_current_jail_bail function to pay bail when in jail.

Users can call the bribe_current_jail function to attempt bribing their way out of jail.

12/23

Users can call the claim_season_rewards function to claim rewards from completed

seasons.

Users can call the donate_to_current_season_jackpot function to contribute to the

season jackpot.

Users can call the draw_citizen_card function to draw cards when on citizen card

squares.

Users can call the whitelist_v2 function to whitelist their account during the lobby

phase.

Users can call the mint_capsules function to mint Founding Citizens Capsule NFTs.

Users can call the mint_orbs function to mint Founding Citizens Orb NFTs.

Users can call the mint_tanks function to mint Founding Citizens Tank NFTs.

13/23

4 Findings

BOA-1 Incorrect Start Point Detection Logic

Severity: Major

Status: Fixed

Code Location:

sources/board.move#198

Descriptions:

The current implementation uses new_square_index < player_current_square_index to

detect if a player has passed the starting point after rolling dice. However, this logic fails to

account for cases where the player's movement results in a full loop around the board (e.g.,

when (player_current_square_index + rolled_number) % board.squares_size == 0). In such

scenarios, the player returns to the exact starting position without triggering the "pass go"

condition, potentially allowing them to bypass rewards or actions tied to completing a full

circuit.

Suggestion:

It is recommended to replace the comparison logic with (player_current_square_index +

rolled_number) >= board.squares_size to accurately detect all cases where the player

completes a full loop.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/23

EGU-1 Lack of Event Emit

Severity: Informational

Status: Acknowledged

Code Location:

sources/entry_guard.move#50

Descriptions:

Functions such as set_is_halted() , set_lobby_params lack logs, making the contract's

activities difficult to track.

Suggestion:

It is recommended to add event emission for this operation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/23

LEV-1 Incorrect Maximum Level Validation in is_max_level
Function

Severity: Informational

Status: Acknowledged

Code Location:

sources/levels.move#118

Descriptions:

The current implementation of is_max_level uses the condition

vector::length(&config.levels) <= level + 1 , which incorrectly identifies invalid levels (e.g.,

level > length) as maximum levels. This a logical inconsistency where out-of-bound indices

are treated as valid maximum levels, even though they do not exist in the configuration.

Suggestion:

It is recommended to modify the condition to explicitly check if level less than length - 1 .

16/23

RV2-1 Mixed Test and Production Code

Severity: Minor

Status: Acknowledged

Code Location:

sources/random_v2.move

Descriptions:

The PredeterminedRandom struct and its associated test logic are designed for testing

purposes but remain present in production code paths. While test-only attributes (#

[test_only]) prevent direct usage in production, the conditional checks (e.g.,

exists<PredeterminedRandom>(@civitia)) still introduce unnecessary branching logic into

the final compiled bytecode.

Suggestion:

It is recommended to remove the test-only conditionals from production functions like

rand_u64 and rand_u64_range .

17/23

TRE-1 Centralization Risk

Severity: Medium

Status: Partially Fixed

Code Location:

sources/treasury.move#21

Descriptions:

Centralization risk was identified in the smart contract:

Admin can withdraw any store created by create_treasury .

Suggestion:

It is recommended that measures be taken to reduce the risk of centralization, such as a

multi-signature mechanism.

Resolution:

The client replied that: The deployment of all civitia modules is done in fact by a multisig,

called Civitia DAO. More details about Civitia DAO can be found in the docs

https://docs.civitia.org/community/civitia-dao Therefore, no single actor can have access to

the stores created by treasury module.

18/23

https://docs.civitia.org/community/civitia-dao

TRE-2 Improper Function Visibility in Treasury Withdrawal

Severity: Informational

Status: Acknowledged

Code Location:

sources/treasury.move#41

Descriptions:

The current implementation exposes the withdraw function with public visibility, creating a

vulnerability if any future upgrade introduces public functions that return or expose the

Treasury struct instance.

Suggestion:

It is recommended to restrict the function visibility by:

1. Changing to public(friend) and explicitly declaring trusted modules in the friend list.

2. Or using internal visibility with controlled access through module-internal

dispatchers.

19/23

TRE-3 Redundant Metadata Validation in Treasury Deposit
Function

Severity: Informational

Status: Fixed

Code Location:

sources/treasury.move#51

Descriptions:

The current implementation performs duplicate metadata validation in the deposit

function:

1. Explicit check asset_metadata == coin_metadata(treasury) before deposit

2. Implicit check within fungible_asset::deposit (which already validates metadata

internally).

Suggestion:

It is recommended to remove the external metadata check to rely solely on the internal

validation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/23

VIP-1 Missing Initialization Check in finalize_stage Function

Severity: Informational

Status: Fixed

Code Location:

sources/vip.move

Descriptions:

The finalize_stage function directly uses store.stage without verifying whether the VIP

module has been initialized (is_vip_initialized). In contrast, increase_score includes a

safety check for is_vip_initialized .

Suggestion:

It is recommended to add an explicit check for initialization status in finalize_stage .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/23

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

22/23

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

23/23

	881_page1.pdf
	881_page2.pdf

