
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Grow Protocol

Mon Jun 09 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Grow Protocol Audit Report

1 Executive Summary

1.1 Project Information

Description The Grow protocol is a yield-generating derivative of Solido's
stablecoin, $CASH. It serves as the first line of defense during
liquidations and utilizes the pooled $CASH to liquidate
underperforming troves, thereby earning collateral penalties
and a liquidation reserve. The rewards are compounded back
into $CASH, and the $bCASH (the receipt token) accumulates
value over time with respect to $CASH

Type DeFi

Auditors MoveBit

Timeline Mon May 26 2025 - Mon Jun 09 2025

Languages Move

Platform Supra

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Solido-Money/grow-protocol

Commits 78c9a37c7cc0ca980d36e85cc344576d626e68d2
c76d57f029b0b4a3bf45d7e18a7263d3d28cae2d
e17052bf4a257631d320ddbe5cc52a794ec4b0e0

1/27

https://github.com/Solido-Money/grow-protocol
https://github.com/Solido-Money/grow-protocol/tree/78c9a37c7cc0ca980d36e85cc344576d626e68d2
https://github.com/Solido-Money/grow-protocol/tree/c76d57f029b0b4a3bf45d7e18a7263d3d28cae2d
https://github.com/Solido-Money/grow-protocol/tree/e17052bf4a257631d320ddbe5cc52a794ec4b0e0

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml be967a5d74d38c90b6e1d5914043
e5f13df3f68b

STR sources/strategy.move 713547608d3e3367bdfae8855dfbe
87c62706fb0

VAU sources/vault.move bbee35d9a2417438202212387c56
3f2406f67b21

2/27

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 9 8 1

Informational 3 3 0

Minor 1 0 1

Medium 4 4 0

Major 0 0 0

Critical 1 1 0

3/27

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/27

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/27

2 Summary

This report has been commissioned by Solido to identify any potential issues and
vulnerabilities in the source code of the Grow Protocol smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 9 issues of varying severity, listed below.

ID Title Severity Status

STR-1 Unused Constants Informational Fixed

VAU-1 Share Manipulation Attack Critical Fixed

VAU-2 Shares Transferred to the Wrong
Address

Medium Fixed

VAU-3 Fee Evasion via Small Withdrawals Medium Fixed

VAU-4 The Last Few Users may be unable
to Redeem

Medium Fixed

VAU-5 The Case where new_balance <
original_balance is not Handled

Medium Fixed

VAU-6 Front-Running harvest for
Arbitrage

Minor Acknowledged

VAU-7 Unused shares Field Informational Fixed

VAU-8 Ineffective earn Function Informational Fixed

6/27

7/27

3 Participant Process

Here are the relevant actors with their respective abilities within the Grow Protocol Smart
Contract :
Admin

pause : Pause vault operations

unpause : Resume vault operations

set_tvl_limit : Set vault deposit cap

set_performance_fee : Set performance fee percentage

harvest : Harvest strategy yield and collect fees

set_withdraw_delay : Set withdrawal unlock delay time

set_fee_recipient : Set address to receive fees

set_withdrawal_fee : Set withdrawal fee percentage

update_slippage : Update maximum allowed slippage

set_min_withdrawal_amount : Update the minimum withdrawal amount

sync_assets : Update total_assets to actual vault balance

User

deposit : Deposit assets into vault for self

deposit_for : Deposit assets into the vault for another address

withdraw : Request asset withdrawal to own address

withdraw_to : Request asset withdrawal to another address

redeem : Redeem shares for assets to own address

redeem_to : Redeem shares for assets to another address

claim_withdrawal : Claim delayed withdrawals after unlock time

8/27

9/27

4 Findings

STR-1 Unused Constants

Severity: Informational

Status: Fixed

Code Location:

sources/strategy.move#3;

sources/vault.move#162

Descriptions:

There are unused constants in the contract.

 constconst ERR_INSUFFICIENT_ASSETSERR_INSUFFICIENT_ASSETS:: u64 u64 == 33;;

 constconst ERR_STRATEGY_FAILEDERR_STRATEGY_FAILED:: u64 u64 == 66;;

Suggestion:

It is recommended to remove unused constants if there's no further design.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/27

VAU-1 Share Manipulation Attack

Severity: Critical

Status: Fixed

Code Location:

sources/vault.move#261-490

Descriptions:

When a user makes their first deposit, the convert_to_shares function grants shares at a

1:1 ratio. However, this share calculation can be manipulated, especially during the initial

stages when the vault is empty.

The share price is determined using total_assets , which is implemented as:

publicpublic fun total_assets fun total_assets<<AssetTypeAssetType>>(()):: u64 u64 {{
 strategy_corestrategy_core::::balance_ofbalance_of<<AssetTypeAssetType>>(())
}}

Attack Scenario:

1. Attacker A deposits 1 unit of CASH via the deposit function and receives 1 bCASH

(share token).

2. Attacker then directly transfers 10**8 CASH tokens to either the strategy_addr or

vault_resource_addr , inflating the vault's balance.

3. Victim B deposits 10**8 CASH , but due to precision loss, receives:

10**8 * 1 / (10**8 + 1) = 0 bCASH

—effectively getting no shares.

4. Attacker A then withdraws their 1 bCASH , extracting the entire 10**8 + 1 CASH ,

profiting unfairly.

This results in a severe imbalance and exploits honest users who deposit afterward.

Suggestion:

11/27

1. Revert if the amount received is not within a slippage tolerance (Add slip protection if

possible)

2. The deployer should initialize the vault by depositing a small amount of CASH during

deployment. This helps establish a fair initial share ratio and prevents early-stage

manipulation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/27

VAU-2 Shares Transferred to the Wrong Address

Severity: Medium

Status: Fixed

Code Location:

sources/vault.move#261-326

Descriptions:

In the deposit_internal function, the calculated share tokens are incorrectly transferred to

the user_addr (the transaction sender), rather than to the intended receiver .

// Incorrect: shares are minted and deposited to user_addr// Incorrect: shares are minted and deposited to user_addr
letlet share_tokens share_tokens == coin coin::::mintmint((sharesshares,, &&share_capshare_cap..mint_capmint_cap));;
coincoin::::depositdeposit<<VaultShareVaultShare>>((user_addruser_addr,, share_tokens share_tokens));;

However, the function accepts a receiver: address parameter, and this address is also used

in the emitted DepositEvent , indicating that the shares should go to the receiver.

Suggestion:

Replace user_addr with receiver when depositing the share tokens to ensure correct

recipient behavior:

// Correct: shares are deposited to receiver// Correct: shares are deposited to receiver
coincoin::::depositdeposit<<VaultShareVaultShare>>((receiverreceiver,, share_tokens share_tokens));;

This ensures the deposit_for function behaves as expected, allowing users to deposit on

behalf of others.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/27

VAU-3 Fee Evasion via Small Withdrawals

Severity: Medium

Status: Fixed

Code Location:

sources/vault.move#624-632;

sources/vault.move#491-594

Descriptions:

When a user withdraws assets, a withdrawal fee is applied—such as in the

process_withdrawal function:

ifif ((!!is_delayed_withdrawalis_delayed_withdrawal)) {{
 letlet fee_amount fee_amount == ifif ((withdrawal_fee withdrawal_fee >> 00)) {{
 letlet fee_u128 fee_u128 == ((assets assets asas u128 u128)) ** ((withdrawal_fee withdrawal_fee asas u128 u128)) // ((FEE_PRECISIONFEE_PRECISION asas u128 u128));;
 ((fee_u128 fee_u128 asas u64 u64)) // Truncates toward zero// Truncates toward zero
 }} elseelse {{
 00
 }};;

 letlet withdrawal_amount withdrawal_amount == assets assets -- fee_amount fee_amount;;
}}

However, users can evade the fee by repeatedly withdrawing very small amounts. Due to

integer division and rounding down, the fee_amount becomes zero for small assets

values, effectively allowing free withdrawals.

Suggestion:

To prevent fee evasion:

Introduce a minimum withdrawal amount.

Or enforce that fee_amount > 0 when withdrawal_fee > 0 , and reject the transaction

otherwise.

14/27

This will ensure that the protocol collects meaningful fees and discourages abuse through

micro-withdrawals.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/27

VAU-4 The Last Few Users may be unable to Redeem

Severity: Medium

Status: Fixed

Code Location:

sources/vault.move#772

Descriptions:

The redeem() function allows users to redeem shares for underlying assets. The amount of

assets to be redeemed is calculated using the formula:

assets = shares * total_assets / total_supply

publicpublic fun convert_to_assets fun convert_to_assets<<AssetTypeAssetType>>((sharesshares:: u64 u64)):: u64 acquires u64 acquires VaultInfoVaultInfo {{
 letlet vault vault == borrow_global borrow_global<<VaultInfoVaultInfo>>((@vault@vault));;
 letlet supply supply == vault vault..total_sharestotal_shares;;
 letlet total total == total_assets total_assets<<AssetTypeAssetType>>(());;

 ifif ((supply supply ==== 00)) {{
 returnreturn shares shares
 }};;

 // Use u128 for intermediate calculations to prevent overflow// Use u128 for intermediate calculations to prevent overflow
 letlet shares_with_precision shares_with_precision == ((shares shares asas u128 u128)) ** ((PRECISIONPRECISION asas u128 u128));;
 letlet assets_precise assets_precise == ((shares_with_precision shares_with_precision ** ((total total asas u128 u128)))) // ((supply supply asas u128 u128));;

 // Divide by PRECISION to get back to normal scale// Divide by PRECISION to get back to normal scale
 letlet assets_precise assets_precise == assets_precise assets_precise // ((PRECISIONPRECISION asas u128 u128));;

 // Convert back to u64 with safety check// Convert back to u64 with safety check
 assertassert!!((assets_precise assets_precise <=<= ((MAX_U64MAX_U64 asas u128 u128)),, ERR_MATH_OVERFLOWERR_MATH_OVERFLOW));;
 ((assets_precise assets_precise asas u64 u64))
 }}

16/27

Here, total_assets is derived from the combined balances of strategy_addr and

vault_resource_addr .

 ##[[viewview]]
 publicpublic fun balance_of fun balance_of<<AssetTypeAssetType>>(()):: u64 acquires u64 acquires StrategyInfoStrategyInfo,, StrategyCapabilityStrategyCapability {{
 // Get strategy's balance// Get strategy's balance
 letlet strategy_signer strategy_signer == get_strategy_signerget_strategy_signer(());;
 letlet strategy_addr strategy_addr == signer signer::::address_ofaddress_of((&&strategy_signerstrategy_signer));;
 letlet strategy_balance strategy_balance == coin coin::::balancebalance<<AssetTypeAssetType>>((strategy_addrstrategy_addr));;

 // Get vault's balance using stored address// Get vault's balance using stored address
 letlet strategy strategy == borrow_global borrow_global<<StrategyInfoStrategyInfo>>((@vault@vault));;
 letlet vault_balance vault_balance == coin coin::::balancebalance<<AssetTypeAssetType>>((strategystrategy..vault_resource_addrvault_resource_addr));;

 // Return total balance across both accounts// Return total balance across both accounts
 strategy_balance strategy_balance ++ vault_balance vault_balance
 }}

After calculating the redeemable amount, the protocol burns the user's shares and then

updates the vault’s accounting.

 // Burn shares immediately in all cases// Burn shares immediately in all cases
 letlet share_cap share_cap == borrow_global borrow_global<<ShareTokenCapabilityShareTokenCapability>>((@vault@vault));;
 letlet share_tokens share_tokens == coin coin::::withdrawwithdraw<<VaultShareVaultShare>>((useruser,, shares shares));;
 coincoin::::burnburn((share_tokensshare_tokens,, &&share_capshare_cap..burn_capburn_cap));;

 // Update vault accounting// Update vault accounting
 letlet vault vault == borrow_global_mut borrow_global_mut<<VaultInfoVaultInfo>>((@vault@vault));;
 vaultvault..total_sharestotal_shares == vault vault..total_sharestotal_shares -- shares shares;;
 vaultvault..total_assetstotal_assets == vault vault..total_assetstotal_assets -- assets assets;;

However, there is an issue: since total_assets is computed based on the balances of these

addresses, anyone can send tokens directly to them. These unsolicited transfers inflate

total_assets , causing the protocol to overestimate the value of each share.

As a result, users may redeem more assets than they are entitled to. Over time, this

discrepancy accumulates, and when the last few users attempt to redeem, the vault's

17/27

internal accounting (vault.total_assets = vault.total_assets - assets) may underflow, making

it impossible to withdraw funds.

Suggestion:

It is recommended to maintain an accurate internal record of vault.total_assets .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/27

VAU-5 The Case where new_balance < original_balance is not
Handled

Severity: Medium

Status: Fixed

Code Location:

sources/vault.move#1009-1058

Descriptions:

In the harvest() function, the protocol liquidates user collateral and converts the collateral

into the underlying asset, which is then transferred to vault_resource_addr . After this, if

new_balance > original_balance , the protocol processes fees and updates the vault's

accounting accordingly.

 ifif ((new_balance new_balance >> original_balance original_balance)) {{
 yield_amount yield_amount == new_balance new_balance -- original_balance original_balance;;

 // Get the vault info with performance fee percentage and fee recipient// Get the vault info with performance fee percentage and fee recipient
 letlet vault vault == borrow_global_mut borrow_global_mut<<VaultInfoVaultInfo>>((@vault@vault));;
 letlet fee_percentage fee_percentage == vault vault..performance_feeperformance_fee;;
 letlet fee_recipient fee_recipient == vault vault..fee_recipientfee_recipient;;

 // Calculate fee amount - use u128 for precision// Calculate fee amount - use u128 for precision
 // With new FEE_PRECISION, 1000 = 1%// With new FEE_PRECISION, 1000 = 1%
 letlet fee_amount fee_amount == ifif ((fee_percentage fee_percentage >> 00)) {{
 // Calculate fee amount with proper precision// Calculate fee amount with proper precision
 letlet fee_u128 fee_u128 == ((yield_amount yield_amount asas u128 u128)) ** ((fee_percentage fee_percentage asas u128 u128)) //
((FEE_PRECISIONFEE_PRECISION asas u128 u128));;
 ((fee_u128 fee_u128 asas u64 u64)) // Convert back to u64// Convert back to u64
 }} elseelse {{
 00
 }};;

19/27

However, if new_balance < original_balance —for example, due to slippage, price impact, or

poor liquidation execution—the protocol does not handle this case. As a result, the internal

accounting may become inaccurate, potentially misrepresenting the true value of assets in

the vault.

Suggestion:

It is recommended to account for this edge case by handling scenarios where the liquidation

results in a loss.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/27

VAU-6 Front-Running harvest for Arbitrage

Severity: Minor

Status: Acknowledged

Code Location:

sources/vault.move#935-1013

Descriptions:

The harvest function is called by the admin to distribute liquidation rewards to stakers. If

harvest_delay is set to 0 , users can immediately withdraw after harvesting. Under low-fee

conditions, this opens the door for front-running and arbitrage attacks.

Attack Scenario:

1. The attacker deposits a large amount of funds via the deposit function.

2. The admin calls the harvest function, distributing rewards.

3. The attacker quickly withdraws their funds via the withdraw function.

By doing this, the attacker captures a disproportionate share of the rewards without

meaningful participation in the staking period, which is unfair to long-term stakers.

Suggestion:

To mitigate this, consider increasing the harvest_delay value when arbitrage opportunities

are likely, preventing immediate withdrawals and reducing the incentive for front-running

the harvest function.

21/27

VAU-7 Unused shares Field

Severity: Informational

Status: Fixed

Code Location:

sources/vault.move#41

Descriptions:

The shares field in the VaultInfo struct is currently unused and not updated anywhere in

the protocol.

/// Extended vault configuration/// Extended vault configuration
struct struct VaultInfoVaultInfo has key has key {{
 namename:: StringString,,
 symbolsymbol:: StringString,,
 decimalsdecimals:: u8 u8,,
 total_assetstotal_assets:: u64 u64,,
 total_sharestotal_shares:: u64 u64,,
 sharesshares:: TableTable<<addressaddress,, u64 u64>>,, // Unused field// Unused field
 pausedpaused:: bool bool,,
 withdraw_requestswithdraw_requests:: TableTable<<addressaddress,, UserWithdrawRequestsUserWithdrawRequests>>,,
 tvl_limittvl_limit:: u64 u64,,
 performance_feeperformance_fee:: u64 u64,,
 harvest_delayharvest_delay:: u64 u64,,
 asset_typeasset_type:: TypeInfoTypeInfo,,
 fee_recipientfee_recipient:: address address,,
 withdrawal_feewithdrawal_fee:: u64 u64,,
}}

Suggestion:

If this field is intended to track individual user shares, it should be properly integrated and

updated throughout the protocol. Otherwise, consider removing it to reduce storage

overhead and avoid confusion.

22/27

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/27

VAU-8 Ineffective earn Function

Severity: Informational

Status: Fixed

Code Location:

sources/vault.move#329-353

Descriptions:

In the deposit_internal function, the earn<AssetType>() function is called with the

comment "Deploy to strategy". However, the earn function currently has no operational

logic—the core functionality is commented out, and it performs no state changes or external

calls.

// Ineffective earn function// Ineffective earn function
fun earnfun earn<<AssetTypeAssetType>>(()) acquires acquires VaultCapabilityVaultCapability {{
 letlet vault_signer vault_signer == get_vault_signerget_vault_signer(());;
 letlet vault_addr vault_addr == signer signer::::address_ofaddress_of((&&vault_signervault_signer));;

 letlet strategy_signer strategy_signer == strategy_core strategy_core::::get_strategy_signerget_strategy_signer(());;
 letlet strategy_addr strategy_addr == signer signer::::address_ofaddress_of((&&strategy_signerstrategy_signer));;

 letlet available_assets available_assets == coin coin::::balancebalance<<AssetTypeAssetType>>((vault_addrvault_addr));;

 // The intended logic is commented out// The intended logic is commented out
 // if (available_assets > 0) {// if (available_assets > 0) {
 // coin::transfer<AssetType>(&vault_signer, strategy_addr, available_assets);// coin::transfer<AssetType>(&vault_signer, strategy_addr, available_assets);
 // strategy_core::deposit<AssetType>();// strategy_core::deposit<AssetType>();
 // };// };
}}

Suggestion:

If this function is not intended to be used, consider removing the earn function.

Resolution:

24/27

This issue has been fixed. The client has adopted our suggestions.

25/27

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

26/27

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

27/27

	873_page1.pdf
	873_page2.pdf

