
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Auro Finance

Tue Apr 29 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_


Auro Finance Audit Report

1 Executive Summary

1.1 Project Information

Description Auro Finance is an advanced Collateralized Debt Position
(CDP) protocol that enables users to access liquidity using
their crypto assets as collateral. Through Auro Finance, users
can borrow USDA, the platform’s native stablecoin, against
multiple collateral options, allowing them to utilize their
holdings without selling them

Type DeFi

Auditors MoveBit

Timeline Tue Apr 15 2025 - Tue Apr 29 2025

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Auro-Finance/core

Commits 1b7731fbdc0812ce0ce6c1e32773ed558234b9cf
589d8a7aff48cae61f424f83fae7afb3304da959

1/22

https://github.com/Auro-Finance/core
https://github.com/Auro-Finance/core/tree/1b7731fbdc0812ce0ce6c1e32773ed558234b9cf
https://github.com/Auro-Finance/core/tree/589d8a7aff48cae61f424f83fae7afb3304da959


1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MCH core/sources/master_chef.move a6433d44c8d33b7148a0c911ca3e
8261b8cc74b2

EPO core/sources/epoch.move 278665c994da835b7ea219214f500
8c3d5a16587

CWR core/sources/coin_wrapper.move b577d333f9e85bdbe1a8ff9f62e57
bfc1be1110f

ARE core/sources/auro_rewards.move 914c95cf328fbb130238d7f5df0478
382cb539c1

APO core/sources/auro_pool.move 697686f67247c977b7e3261a93f88
4b5125a519c

GST core/sources/global_state.move 124a73b88127160cb5886dd13f45
6781dd9fdf58

DAO core/sources/dao.move bbb5238fe42a39deb6b6b97a3a06
630fc4995b37

ATO core/sources/auro_token.move d7e62402aeb51689ce4993574c70
2e8ca993a311

CON core/sources/convert.move dca4490c5277c316fcd45d3702113
90b8f728ed7

UTO core/sources/usda_token.move ce2d9dec1cff4779d6f769b466f5e0
df155602b2

MOV core/Move.toml 38356dee3beecc0727ce146eda9b
b6523348c75f

2/22



RPO core/sources/rewards_pool.move e7057676e02c2ea10e29b3c61347
c4a4a7fb3ff8

ORA core/sources/oracle.move 1bb33ad8d693aa45369c848e4736
51c76150b18c

LPO core/sources/lending_pool.move 057ae4e545fe68d7ecb21406cc832
0deeff0cc91

3/22



1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 8 8 0

Informational 3 3 0

Minor 1 1 0

Medium 3 3 0

Major 1 1 0

Critical 0 0 0

4/22



1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

5/22



1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/22



2 Summary

This report has been commissioned by Auro Finance to identify any potential issues and
vulnerabilities in the source code of the Auro Finance smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

ATO-1 Rename LIQUIIDITY_ALLOCATION to
LIQUIDITY_ALLOCATION

Informational Fixed

LPO-1 Rename last_depsited_times  to
last_deposited_times

Informational Fixed

ORA-1 The Default token Price Expiration
time is too Long

Medium Fixed

ORA-2 The case where the Expo is Positive
is not Taken into Account

Medium Fixed

ORA-3 The Price Calculation is Incorrect
when expo  is Positive

Medium Fixed

RPO-1 The User may not Receive any
Rewards

Major Fixed

RPO-2 Duplicate Check and Setting Minor Fixed

RPO-3 Redundant Conditional Check in
unstake  Function

Informational Fixed

7/22



3 Participant Process

Here are the relevant actors with their respective abilities within the Auro Finance Smart
Contract :
Admin

withdraw_fees : Collect protocol fees from the pool.

set_pause : Toggle pause state of the pool.

set_limits : Update supply/borrow caps.

set_ltv : Modify Loan-to-Value ratios.

set_liquidation_threshold : Adjust liquidation thresholds.

set_liquidation_config : Configure liquidation parameters.

set_interest_rate : Update interest rate model.

set_fees : Set borrowing/protocol fees.

set_lock_times : Modify withdrawal lock periods.

set_early_withdraw_fee_bps : Set early withdrawal penalty.

create_pool : Initialize a new liquidity pool with specified LP token and parameters.

set_pool_locked_time : Update the locked period for a specific pool.

set_max_age_secs : Set maximum valid duration for price data validity.

set_pyth_id : Bind token to Pyth oracle price feed identifier.

whitelist_address : Manage address whitelisting status for protocol access.

pause : Toggle global pause state of the exchange protocol.

set_public : Controls whether the protocol is only open to the whitelist.

whitelist_fungible_asset : Add fungible asset to protocol's reward token whitelist.

whitelist_coin : Whitelist native coin type by creating a wrapper asset.

set_pool_alloc_point : Adjust reward distribution weights for liquidity pools.

pool_incentive_coin_entry : Deposit native coins as incentives for the specified reward

pool.

8/22



pool_incentive_fa_entry : Deposit fungible assets as incentives for the specified reward

pool.

User

deposit : Stake assets in the lending pool.

withdraw : Withdraw assets (may incur early fee).

borrow : Take out a loan from the pool.

repay : Repay borrowed assets.

liquidate : Liquidate undercollateralized positions.

create_position_if_not_exists : Initialize user position.

remove_position : Delete empty position (requires no deposits/debts).

claim_rewards : Claim accumulated rewards from a specified pool.

deposit (masterchef): Stake LP tokens into a pool.

request_withdraw (masterchef): Initiate a withdrawal request for staked LP tokens.

withdraw (masterchef): Execute withdrawal of unstaked LP tokens.

position_claim_rewards : Claim accumulated rewards from the Auro farming position.

masterchef_claim_rewards : Claim farming rewards from the MasterChef pool.

advance_epoch : Trigger epoch transition to distribute pending emissions.

9/22



4 Findings

ATO-1 Rename LIQUIIDITY_ALLOCATION to
LIQUIDITY_ALLOCATION

Severity: Informational

Status: Fixed

Code Location:

core/sources/auro_token.move#35

Descriptions:

The issue in the provided code lies in the LIQUIIDITY_ALLOCATION  constant, which has a

typo in its name. It should be LIQUIDITY_ALLOCATION .

constconst  LIQUIIDITY_ALLOCATIONLIQUIIDITY_ALLOCATION:: u64  u64 ==  50_000_00_000_00050_000_00_000_000;;

primary_fungible_storeprimary_fungible_store::::depositdeposit((liquidityliquidity,,  mintmint((LIQUIIDITY_ALLOCATIONLIQUIIDITY_ALLOCATION))));;

Suggestion:

It is recommended to rename LIQUIIDITY_ALLOCATION  to LIQUIDITY_ALLOCATION .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/22



LPO-1 Rename last_depsited_times  to last_deposited_times

Severity: Informational

Status: Fixed

Code Location:

core/sources/lending_pool.move#138

Descriptions:

In the UserPosition  struct, the field name last_depsited_times  appears to be a typo. It

should likely be last_deposited_times .

        struct struct UserPositionUserPosition has key has key,, copy copy,, drop  drop {{
                emode_idemode_id::  StringString,,
                deposit_sharesdeposit_shares::  SimpleMapSimpleMap<<ObjectObject<<LendingPoolLendingPool>>,, u128 u128>>,,
                debt_sharesdebt_shares::  SimpleMapSimpleMap<<ObjectObject<<LendingPoolLendingPool>>,, u128 u128>>,,
                last_depsited_timeslast_depsited_times:: u64 u64,,
        }}

Suggestion:

It is recommended to rename last_depsited_times  to last_deposited_times .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/22



ORA-1 The Default token Price Expiration time is too Long

Severity: Medium

Status: Fixed

Code Location:

core/sources/oracle.move#23

Descriptions:

In the oracle contract, the default price expiration age is set to 120 seconds.

constconst  INITIAL_MAX_AGE_SECSINITIAL_MAX_AGE_SECS:: u64  u64 ==  120120;;

However, for some high-traffic tokens, a 120-second expiration time can result in significant

price discrepancies.

Suggestion:

It is recommended to set the expiration time to 30 seconds or less for such tokens to ensure

more accurate and up-to-date pricing.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/22



ORA-2 The case where the Expo is Positive is not Taken into
Account

Severity: Medium

Status: Fixed

Code Location:

core/sources/oracle.move#109-118

Descriptions:

In the get_pyth_price()  function, the protocol currently only considers the case where the

exponent ( expo ) is negative, but it does not account for the case where the exponent is

positive.

If the exponent is positive, the price should be calculated as follows:

price = raw_price * math128::pow(10, (i64::get_magnitude_if_positive(&i64_expo) as u128)) / 

PRICE_PRECISION

Suggestion:

It is recommended to get the price based on the sign of expo .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/22



ORA-3 The Price Calculation is Incorrect when expo  is Positive

Severity: Medium

Status: Fixed

Code Location:

core/sources/oracle.move#112-115

Descriptions:

The function get_pyth_price()  is used to fetch the price from Pyth. The current explanation

is incorrect. When expo  is negative, the price is calculated as:

price = raw_price * PRICE_PRECISION / 10^abs(expo)

          ifif((i64i64::::get_is_negativeget_is_negative((&&expoexpo)))){{
                        math128math128::::mul_divmul_div((
                                ((raw_price raw_price asas u128 u128)),,
                                PRICE_PRECISIONPRICE_PRECISION,,
                                math128math128::::powpow((1010,,  ((i64i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&expoexpo))  asas u128 u128)))),,
                        ))
                }}

However, when expo  is positive, the correct formula should be:

price = raw_price * 10^abs(expo) / PRICE_PRECISION

elseelse{{
                        math128math128::::mul_divmul_div((
                                ((raw_price raw_price asas u128 u128)),,
                                PRICE_PRECISIONPRICE_PRECISION,,
                                math128math128::::powpow((1010,,  ((i64i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&expoexpo))  asas u128 u128)))),,
                        ))
                }}

So the handling of positive expo  needs to be corrected accordingly.

Suggestion:

It is recommended to calculate the price as price = raw_price * expo / PRICE_PRECISION

when expo is positive.

14/22



Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/22



RPO-1 The User may not Receive any Rewards

Severity: Major

Status: Fixed

Code Location:

core/sources/rewards_pool.move#573

Descriptions:

In the add_rewards_current_epoch()  function, the reward_per_sec  is multiplied by a

constant called ACCUM_REWARD_SCALE , which is currently set to 1e8 .

                ifif  ((new_finish_time new_finish_time >> timestamp timestamp::::now_secondsnow_seconds(())))  {{
                        **reward_duration reward_duration == new_finish_time  new_finish_time -- timestamp timestamp::::now_secondsnow_seconds(())  ;;
                        **reward_period_finish reward_period_finish == new_finish_time new_finish_time;;
                }};;
                **reward_per_sec reward_per_sec == math128 math128::::mul_divmul_div((
                        ((remaining remaining ++ reward_amount reward_amount)),,
                        ACCUM_REWARD_SCALEACCUM_REWARD_SCALE,,
                        ((**reward_duration reward_duration asas u128 u128))
                ));;

In the update_pool_per_token()  function, the acc_token_per_share  is calculated as

acc_token_per_share = generate_reward / total_supply :

      let generate_reward =

            get_generate_reward(

                (reward_info.last_reward_time as u128),

                (timestamp::now_seconds() as u128),

                reward_info

            );

        let acc_token_per_share = &mut reward_info.acc_token_per_share;

        *acc_token_per_share += generate_reward / total_supply;

        if (timestamp::now_seconds() > reward_info.reward_period_finish) {

16/22



            reward_info.reward_per_sec = 0;

        };

where generate_reward = (to - from) * reward_per_sec .

There is an issue here: if the time duration ( to - from ) is only 1 second, and the

total_supply  is a large number (with 8 decimal precision and continuously increasing), then

generate_reward / total_supply  may become zero due to integer division. As a result,

last_reward_time  is updated, but no reward is actually accounted for.

Suggestion:

It is recommended to consider increasing the precision of ACCUM_REWARD_SCALE

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/22



RPO-2 Duplicate Check and Setting

Severity: Minor

Status: Fixed

Code Location:

core/sources/rewards_pool.move#584;

core/sources/rewards_pool.move#360

Descriptions:

In the check if (reward_info.last_reward_time >= timestamp::now_seconds() ||

reward_info.reward_per_sec == 0) return; , it is ensured that to>from , and in the assert

check, the lock time condition is checked.

  assertassert!!((
                        user_infouser_info..requested_withdraw_timerequested_withdraw_time  ++ pool_info pool_info..locked_timelocked_time  <=<=  
timestamptimestamp::::now_secondsnow_seconds(()),,
                        ERR_REQUEST_WITHDRAW_TIME_INVALIDERR_REQUEST_WITHDRAW_TIME_INVALID
                ));;
                ifif  ((user_infouser_info..requested_withdraw_timerequested_withdraw_time  ++ pool_info pool_info..locked_timelocked_time  <=<=  
timestamptimestamp::::now_secondsnow_seconds(())))  {{
                        assertassert!!((user_infouser_info..requested_withdraw_amountrequested_withdraw_amount  ==== amount amount,,  
ERR_INVALID_AMOUNTERR_INVALID_AMOUNT));;
                        user_infouser_info..requested_withdraw_timerequested_withdraw_time  ==  00;;
                        user_infouser_info..requested_withdraw_amountrequested_withdraw_amount  ==  00;;
                }}
......
fun fun get_generate_rewardget_generate_reward((fromfrom:: u128 u128,,  toto:: u128 u128,,  reward_inforeward_info::  &&  RewardsTokenInfoRewardsTokenInfo)):: u128  u128 {{
                letlet pool_end_time  pool_end_time ==  ((reward_inforeward_info..reward_period_finishreward_period_finish  asas u128 u128));;
                letlet last_reward_time  last_reward_time ==  ((reward_inforeward_info..last_reward_timelast_reward_time  asas u128 u128));;
                letlet reward_per_sec  reward_per_sec == reward_info reward_info..reward_per_secreward_per_sec;;
                ifif  ((fromfrom  >=>= to to))  returnreturn  00;;

epoch_rewards.is_distribution = true;  Repeat the setting.

  assertassert!!((epoch_rewardsepoch_rewards..is_distributionis_distribution  ====  falsefalse,,  EINCENTIVES_ALREADY_DISTRIBUTEDEINCENTIVES_ALREADY_DISTRIBUTED));;
  epoch_rewardsepoch_rewards..is_distributionis_distribution  ==  truetrue;;
  letlet total_amount  total_amount ==  &&epoch_rewardsepoch_rewards..total_amountstotal_amounts;;
  letlet tokens  tokens ==  &&total_amounttotal_amount..keyskeys(());;

18/22



  tokenstokens..for_each_reffor_each_ref((||tokentoken||{{
          letlet amount  amount ==  **total_amounttotal_amount..borrowborrow((tokentoken));;
          letlet asset  asset ==  withdraw_from_poolwithdraw_from_pool((&&incentive_dataincentive_data..extend_refextend_ref,,  **tokentoken,, amount amount));;
          add_rewards_current_epochadd_rewards_current_epoch((poolpool,, asset asset));;
  }}));;
  eventevent::::emitemit((RewardsDistributedRewardsDistributed  {{
          poolpool,,
          epochepoch,,
          timestamptimestamp:: timestamp timestamp::::now_secondsnow_seconds(())
  }}));;
  epoch_rewardsepoch_rewards..is_distributionis_distribution  ==  truetrue;;

Suggestion:

It is recommended to remove unnecessary and duplicate checks.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/22



RPO-3 Redundant Conditional Check in unstake  Function

Severity: Informational

Status: Fixed

Code Location:

core/sources/rewards_pool.move#344-366

Descriptions:

The following if  condition is redundant:

ifif  ((user_infouser_info..requested_withdraw_timerequested_withdraw_time  ++ pool_info pool_info..locked_timelocked_time  <=<=  
timestamptimestamp::::now_secondsnow_seconds(())))  {{

This condition is already checked by the assert!  statement immediately before it. Since the

assert!  will revert the transaction if the condition is false, the if  block will only be executed

if the condition is true, making the explicit if  check unnecessary.

Suggestion:

Remove the redundant if  condition and directly execute the logic inside it:

assertassert!!((
        user_infouser_info..requested_withdraw_timerequested_withdraw_time  ++ pool_info pool_info..locked_timelocked_time  <=<=  
timestamptimestamp::::now_secondsnow_seconds(()),,
        ERR_REQUEST_WITHDRAW_TIME_INVALIDERR_REQUEST_WITHDRAW_TIME_INVALID
));;

assertassert!!((user_infouser_info..requested_withdraw_amountrequested_withdraw_amount  ==== amount amount,,  ERR_INVALID_AMOUNTERR_INVALID_AMOUNT));;
user_infouser_info..requested_withdraw_timerequested_withdraw_time  ==  00;;
user_infouser_info..requested_withdraw_amountrequested_withdraw_amount  ==  00;;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/22



Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

21/22



Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

22/22


	831_page1.pdf
	831_page2.pdf

