
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Solido Money

Tue Apr 08 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Solido Money Audit Report

1 Executive Summary

1.1 Project Information

Description Solido is a CDP which enables users to borrow funds using
multiple forms of yield-generating collateral, including
$SUPRA and yield-amplified or auto-compounding yield
tokens

Type DeFi

Auditors MoveBit

Timeline Tue Mar 11 2025 - Tue Apr 08 2025

Languages Move

Platform Others

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/solido-money/cdp-contracts

Commits ab42ba766ac4634eb6f1efe3dbc3f1624071bec4
b473a56ad6631dc8b47d97778b3f809dd309c853
587b9192d2aaba814ad9eba2a9820d58fa2c65ea

1/41

https://github.com/solido-money/cdp-contracts
https://github.com/solido-money/cdp-contracts/tree/ab42ba766ac4634eb6f1efe3dbc3f1624071bec4
https://github.com/solido-money/cdp-contracts/tree/b473a56ad6631dc8b47d97778b3f809dd309c853
https://github.com/solido-money/cdp-contracts/tree/587b9192d2aaba814ad9eba2a9820d58fa2c65ea

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml 51eb6fbe1485c0368fa84eb2fcd1d
7da17d00eaf

EVE sources/contracts/events.move 79783a533fd8c2a7e1a21d69d4bf8
234471a5226

CMU sources/contracts/cdp_multi.move c3b9f82fe13e2b160e723ec076aaef
e0de724488

POS sources/contracts/positions.move b4d1a55074ba2298a83a5c08e08c
b2f042337dbe

POR sources/contracts/price_oracle.mo
ve

fced12c19b560b9529842eadefd8d
2d58716fb5f

CON sources/contracts/config.move c2264e4b94e8d902cb0aa25f7ecb7
816ebb08091

2/41

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 20 19 1

Informational 1 1 0

Minor 3 3 0

Medium 8 7 1

Major 7 7 0

Critical 1 1 0

3/41

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/41

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/41

2 Summary

This report has been commissioned by Solido to identify any potential issues and
vulnerabilities in the source code of the Solido Money smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 20 issues of varying severity, listed below.

ID Title Severity Status

CMU-1 Positions is Flagged as Liquidatable
immediately after Creation

Critical Fixed

CMU-2 Lack of Slippage Protection in
redeem() Function

Major Fixed

CMU-3 Bad Debt in liquidate() Due to
Excessive Penalty Payouts

Major Fixed

CMU-4 'total_collateral' Miscalculated Major Fixed

CMU-5 Missing Access Control for
initialize()

Major Fixed

CMU-6 No Partial Liquidation Prevents
Whale Liquidation

Major Fixed

CMU-7 Unable to Repay Fully Major Fixed

CMU-8 The Repayer is Charged a
Liquidation Fee

Major Fixed

CMU-9 Partial Clearing of Batches with
Loss of Precision

Medium Fixed

6/41

EVE-1 Set the Event Functions to friend Minor Fixed

POR-1 The Supra Oracle could Return a
Stale Price

Medium Fixed

CMU-10 User Lacks Buffer Space Medium Acknowledged

CMU-11 Users Can Self-liquidate Medium Fixed

CMU-12 set_price not Marked as test-
only

Medium Fixed

CMU-13 The User's Position may not be
Liquidated

Medium Fixed

CMU-14 The Verification of Total
Distribution is Vulnerable to
Precision Loss

Medium Fixed

CMU-15 Missing a bad Debt Position
Process

Medium Fixed

CMU-16 Missing Fee Validation in redeem()
Function

Minor Fixed

CMU-17 Lack of Event Minor Fixed

CMU-18 supra_oracle_storage is Not
Available

Informational Fixed

7/41

3 Participant Process

Here are the relevant actors with their respective abilities within the Solido Money Smart
Contract :
Admin

initialize : Initializes core contract components.

add_collateral : Adds new collateral type with parameters.

set_config : Updates collateral configuration parameters.

set_oracle_id : Updates oracle ID for a collateral type.

set_operation_status : Controls operational flags for collateral.

set_fee_collector : Updates fee collector address.

User

register_circle_coin : Registers CIRCLECoin for an account.

register_collateral_coin : Registers collateral coin type for an account.

register_as_redemption_provider : Opt-in/out as redemption provider.

open_trove : Creates new collateralized debt position.

deposit_or_mint : Adjusts collateral/debt in existing position.

repay_or_withdraw : Repays debt and/or withdraws collateral.

close_trove : Closes debt position with full repayment.

liquidate : Liquidates undercollateralized positions.

partial_liquidate : Liquidators can perform partial liquidations.

redeem : Redeems collateral for CIRCLE tokens.

redeem_multiple : Batch redemption from multiple providers.

8/41

4 Findings

CMU-1 Positions is Flagged as Liquidatable immediately after
Creation

Severity: Critical

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#407-416

Descriptions:

In the liquidate() function, the protocol calculates the current_ratio as follows:

// Calculate ICR // Calculate ICR
letlet price price == price_oracle price_oracle::::get_priceget_price<<CoinTypeCoinType>>(());;
letlet collateral_value collateral_value == fixed_point32 fixed_point32::::multiply_u64multiply_u64((collateral_amountcollateral_amount,, price price));;
letlet current_ratio current_ratio == ((collateral_value collateral_value ** 1000010000)) // debt_amount debt_amount;;

The function then checks whether the position is liquidatable.

 // Verify position is liquidatable (ICR < liquidation threshold)// Verify position is liquidatable (ICR < liquidation threshold)
 assertassert!!((current_ratio current_ratio << liquidation_threshold liquidation_threshold,, eventsevents::::err_cannot_liquidateerr_cannot_liquidate(())));;

However, during initialization, the debt token is assumed to have 8 decimals.

 // Initialize CIRCLE coin// Initialize CIRCLE coin
 letlet ((burn_capburn_cap,, freeze_cap freeze_cap,, mint_cap mint_cap)) == coin coin::::initializeinitialize<<CIRCLECoinCIRCLECoin>>((
 adminadmin,,
 stringstring::::utf8utf8((bb"SOLIDO STABLECOIN""SOLIDO STABLECOIN")),,
 stringstring::::utf8utf8((bb"CIRCLE""CIRCLE")),,
 88,,
 truetrue
));;

On Aptos, not all tokens follow this standard—for example, USDT (6 decimals) and USDC (6

decimals).

https://aptoscan.com/fungible-

asset/0x357b0b74bc833e95a115ad22604854d6b0fca151cecd94111770e5d6ffc9dc2b

9/41

https://aptoscan.com/fungible-asset/0x357b0b74bc833e95a115ad22604854d6b0fca151cecd94111770e5d6ffc9dc2b
https://aptoscan.com/fungible-asset/0x357b0b74bc833e95a115ad22604854d6b0fca151cecd94111770e5d6ffc9dc2b

If such tokens (with fewer than 8 decimals) are used as collateral, the current_ratio

calculation becomes incorrect. Specifically, the ratio will be 100 times smaller than the

actual value (since debt_amount is treated as having 8 decimals, while collateral may have

fewer). As a result, positions may be flagged as liquidatable immediately after creation.

Suggestion:

It is recommended to ensure the collateral_value and debt_amount are compared at the

same decimal precision.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/41

CMU-2 Lack of Slippage Protection in redeem() Function

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#653-763

Descriptions:

In the redeem() function, the protocol calculates the collateral_to_redeem based on the

current oracle price, deducts fees, and transfers the collateral to the user.

 // Calculate collateral amounts// Calculate collateral amounts
 letlet price price == price_oracle price_oracle::::get_priceget_price<<CoinTypeCoinType>>(());;
 letlet collateral_to_redeem collateral_to_redeem == fixed_point32 fixed_point32::::divide_u64divide_u64((actual_redemption_amountactual_redemption_amount,,
priceprice));;
 letlet redemption_fee redemption_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee redemption_fee)) // 1000010000;;
 letlet user_gratuity_fee user_gratuity_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee_gratuity redemption_fee_gratuity)) // 1000010000;;
 letlet collateral_after_fee collateral_after_fee == collateral_to_redeem collateral_to_redeem -- redemption_fee redemption_fee -- user_gratuity_fee user_gratuity_fee;;

 coincoin::::transfertransfer<<CoinTypeCoinType>>((&&resource_signerresource_signer,, signersigner::::address_ofaddress_of((redeemerredeemer)),,
collateral_after_feecollateral_after_fee));;

However, there is no slippage protection mechanism, meaning users have no guarantee

on the minimum amount of collateral they will receive.

Suggestion:

It is recommended to introduce a slippage tolerance parameter (e.g., min_collateral_out) in

the redeem() function:

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/41

CMU-3 Bad Debt in liquidate() Due to Excessive Penalty
Payouts

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#391-516

Descriptions:

In the liquidation process, the protocol enforces the following logic:

1. If current_ratio <= 100% (i.e., current_ratio <= 10000 in basis points), the liquidator

receives all collateral from the position.

 // Transfer all collateral to liquidator since debt > collateral value// Transfer all collateral to liquidator since debt > collateral value
 coincoin::::transfertransfer<<CoinTypeCoinType>>((&&resource_signerresource_signer,, signersigner::::address_ofaddress_of((liquidatorliquidator)),,

2. If current_ratio > 100% , the protocol imposes a liquidation penalty

(total_penalty_in_collateral) on the borrower.

Problem: If total_penalty_in_collateral > collateral_amount , the protocol pays
the excess penalty (total_penalty_in_collateral - collateral_amount) from its own

reserves.

 letlet liquidator_reward_in_collateral liquidator_reward_in_collateral==liquidator_penalty_in_collateralliquidator_penalty_in_collateral++
fixed_point32fixed_point32::::divide_u64divide_u64((debt_amountdebt_amount,, price price)) ;;
 letlet user_refund user_refund == ifif ((total_penalty_in_collateral total_penalty_in_collateral << collateral_amount collateral_amount)) {{
 collateral_amount collateral_amount -- total_penalty_in_collateral total_penalty_in_collateral
 }} elseelse {{
 00
 }};;

This creates a bad debt scenario where the protocol covers losses beyond the

available collateral.

Suggestion:

It is recommended to ensure total_penalty_in_collateral never exceeds collateral_amount .

Resolution:

12/41

This issue has been fixed. The client has adopted our suggestions.

13/41

CMU-4 'total_collateral' Miscalculated

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#482-591

Descriptions:

The problem appears in the redeem function of cdp_multi. When a user redeemes part of

the collateral, the user reward fee (user_gratuity_fee) is not directly rewarded to the user

account through token, but is directly added to the user's total collateral. This amount of

reward collateral is not added to the total amount of contract collateral in the logic of partial

withdrawal, which may result in the user being unable to withdraw the reward collateral

publicpublic entry fun redeem entry fun redeem<<CoinTypeCoinType>>((
 redeemerredeemer:: &&signersigner,,
 provider_addrprovider_addr:: address address,,
 circle_amountcircle_amount:: u64 u64
)) acquires acquires TroveManagerTroveManager,, SignerCapabilitySignerCapability,, LRCollectorCapabilityLRCollectorCapability {{

 letlet collateral_to_redeem collateral_to_redeem == fixed_point32 fixed_point32::::divide_u64divide_u64((actual_redemption_amountactual_redemption_amount,,
priceprice));; // 2000// 2000
 letlet redemption_fee redemption_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee redemption_fee)) // 1000010000;; // 2000 *// 2000 *
0.5% = 100.5% = 10
 letlet user_gratuity_fee user_gratuity_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee_gratuity redemption_fee_gratuity)) // 1000010000;; ////
2000 * 1% = 202000 * 1% = 20
 letlet collateral_after_fee collateral_after_fee == collateral_to_redeem collateral_to_redeem -- redemption_fee redemption_fee -- user_gratuity_fee user_gratuity_fee;;
// 2000 - 10 - 20 = 1970// 2000 - 10 - 20 = 1970

 coincoin::::transfertransfer<<CoinTypeCoinType>>((&&resource_signerresource_signer,, signersigner::::address_ofaddress_of((redeemerredeemer)),,
collateral_after_feecollateral_after_fee));; // 1970 --> USER// 1970 --> USER

 letlet is_closing is_closing == actual_redemption_amount actual_redemption_amount ==== max_redeemable max_redeemable;;
 letlet new_collateral new_collateral == collateral_amount collateral_amount -- collateral_to_redeem collateral_to_redeem ++ user_gratuity_fee user_gratuity_fee;; ////
4000 - 2000 + 20 = 20204000 - 2000 + 20 = 2020

14/41

 letlet new_debt new_debt == debt_amount debt_amount -- actual_redemption_amount actual_redemption_amount;;

 ifif ((is_closingis_closing)) {{

 }} elseelse {{
 **total_collateral total_collateral == **total_collateral total_collateral -- collateral_to_redeem collateral_to_redeem;; // One: 4000 - 2000 =// One: 4000 - 2000 =
2000 Two: 2000 - 20192000 Two: 2000 - 2019
 }};;
 **total_debt total_debt == **total_debt total_debt -- actual_redemption_amount actual_redemption_amount;;

............
 ifif ((new_collateral new_collateral ==== 00 &&&& new_debt new_debt ==== 00)) {{
 positionspositions::::remove_positionremove_position<<CoinTypeCoinType>>((provider_addrprovider_addr));;
 }} elseelse {{
 positionspositions::::update_positionupdate_position<<CoinTypeCoinType>>((
 provider_addrprovider_addr,,
 new_collateralnew_collateral,,
 new_debtnew_debt,,
 timestamptimestamp::::now_secondsnow_seconds(())
));;
 }};;
 }}

Examples are as follows:

The total amount of collateral of the user is 4000, and then the user makes a partial

redemption for the first time, and the redemption amount is 2000

User collateral balance Total collateral of contract

Initial state 4000 4000

First 4000 - 2000 + 20 = 2020 2000

Second 2020 - 2019 + user_gratuity_fee 2000 <= 2019 (Bad debts occur)

15/41

letlet collateral_to_redeem collateral_to_redeem == fixed_point32 fixed_point32::::divide_u64divide_u64((actual_redemption_amountactual_redemption_amount,, price price));;
// 2000// 2000
letlet redemption_fee redemption_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee redemption_fee)) // 1000010000;; // 2000 * 0.5% =// 2000 * 0.5% =
1010
letlet user_gratuity_fee user_gratuity_fee == ((collateral_to_redeem collateral_to_redeem ** redemption_fee_gratuity redemption_fee_gratuity)) // 1000010000;; // 2000// 2000
* 1% = 20* 1% = 20
letlet collateral_after_fee collateral_after_fee == collateral_to_redeem collateral_to_redeem -- redemption_fee redemption_fee -- user_gratuity_fee user_gratuity_fee;; ////
2000 - 10 - 20 = 19702000 - 10 - 20 = 1970

......
coincoin::::transfertransfer<<CoinTypeCoinType>>((&&resource_signerresource_signer,, signersigner::::address_ofaddress_of((redeemerredeemer)),,
collateral_after_feecollateral_after_fee));; // 1970 --> USER// 1970 --> USER

According to the code logic, the redemption fee (redemption_fee) and the user reward fee

(user_gratuity_fee) are respectively 10 and 20. The user actually receives 1970 collateral

quantity

letlet new_collateral new_collateral == collateral_amount collateral_amount -- collateral_to_redeem collateral_to_redeem ++ user_gratuity_fee user_gratuity_fee;; // 4000// 4000
- 2000 + 20 = 2020- 2000 + 20 = 2020

16/41

letlet new_debt new_debt == debt_amount debt_amount -- actual_redemption_amount actual_redemption_amount;;

The user's total amount of new collateral (new_collateral) plus the user reward fee is 2020,

and the total amount of contract collateral (total_collateral) is 2000

**total_collateral total_collateral == **total_collateral total_collateral -- collateral_to_redeem collateral_to_redeem;; // 4000 - 2000 = 2000// 4000 - 2000 = 2000

When the user's second redemption amount is 2019, the user cannot receive the reward fee

because the total collateral amount is 2000 less than the user's redemption amount 2019

(total_collateral) resulting in bad debts

Suggestion:

User reward fees are awarded through other separate reserves to ensure that the total

amount of collateral is calculated correctly

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/41

CMU-5 Missing Access Control for initialize()

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#37-65

Descriptions:

The initialize() function is designed to set up the initial state and configuration of a module.

However, an issue with this function is the lack of access control, which means that anyone

can call this function and initialize the module.

publicpublic entry fun entry fun initializeinitialize((adminadmin:: &&signersigner,, fee_collectorfee_collector:: address address)) {{
 price_oracleprice_oracle::::initializeinitialize((adminadmin));;
 configconfig::::initializeinitialize((adminadmin,, fee_collector fee_collector));;
 positionspositions::::initializeinitialize((adminadmin));;
 // Initialize CIRCLE coin// Initialize CIRCLE coin
 letlet ((burn_capburn_cap,, freeze_cap freeze_cap,, mint_cap mint_cap)) == coin coin::::initializeinitialize<<CIRCLECoinCIRCLECoin>>((
 adminadmin,,
 stringstring::::utf8utf8((bb"SOLIDO STABLECOIN""SOLIDO STABLECOIN")),,
 stringstring::::utf8utf8((bb"CIRCLE""CIRCLE")),,
 88,,
 truetrue
));;
 // Create resource account for CDP pool// Create resource account for CDP pool
 letlet ((_resource_signer_resource_signer,, signer_cap signer_cap)) == account account::::create_resource_accountcreate_resource_account((adminadmin,,
bb"cdp_pool""cdp_pool"));;
 move_tomove_to((adminadmin,, SignerCapabilitySignerCapability {{ capcap:: signer_cap signer_cap }}));;
 // Create LR_COLLECTOR account and capability// Create LR_COLLECTOR account and capability
 letlet ((lr_collector_signerlr_collector_signer,, lr_collector_cap lr_collector_cap)) == account account::::create_resource_accountcreate_resource_account((adminadmin,,
bb"lr_collector""lr_collector"));;
 ifif ((!!coincoin::::is_account_registeredis_account_registered<<CIRCLECoinCIRCLECoin>>
((signersigner::::address_ofaddress_of((&&lr_collector_signerlr_collector_signer)))))) {{
 coincoin::::registerregister<<CIRCLECoinCIRCLECoin>>((&&lr_collector_signerlr_collector_signer));;
 }};;
 move_tomove_to((adminadmin,, LRCollectorCapabilityLRCollectorCapability {{ capcap:: lr_collector_cap lr_collector_cap }}));;
 move_tomove_to((adminadmin,, TroveManagerTroveManager {{
 circle_mint_capcircle_mint_cap:: mint_cap mint_cap,,
 circle_burn_capcircle_burn_cap:: burn_cap burn_cap,,

18/41

 circle_freeze_capcircle_freeze_cap:: freeze_cap freeze_cap,,
 total_collateraltotal_collateral:: table table::::newnew(()),,
 total_debttotal_debt:: table table::::newnew(()),,
 }}));;
 }}

This can lead to serious security vulnerabilities and unintended behavior in the system.

Suggestion:

It is recommended to include access control mechanisms.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/41

CMU-6 No Partial Liquidation Prevents Whale Liquidation

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#441

Descriptions:

The liquidate() function currently allows only full liquidation of a user's position.However, it

introduces a significant issue: large positions (e.g., "whale" positions) may not be liquidated

because most users lack the funds to fully liquidate them.

 // Transfer and burn CIRCLE from liquidator// Transfer and burn CIRCLE from liquidator
 letlet vault_manager vault_manager == borrow_global_mut borrow_global_mut<<TroveManagerTroveManager>>((@cdp@cdp));;
 letlet circle_coins circle_coins == coin coin::::withdrawwithdraw<<CIRCLECoinCIRCLECoin>>((liquidatorliquidator,, debt_amount debt_amount));;
 coincoin::::burnburn((circle_coinscircle_coins,, &&vault_managervault_manager..circle_burn_capcircle_burn_cap));;

Suggestion:

It is recommended to implement partial liquidation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/41

CMU-7 Unable to Repay Fully

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#324

Descriptions:

Assuming that the user calls open_trove to use 1000 circle_mint, the user will get 1000

through coin::mint , and the total_debt_amount will increase the fee.

At this time, the total_debt_amount to be repaid = 1000 + borrow_fee + liquidation_reserve

Then the user calls the repay_or_withdraw function to repay all, and the user holds

circle_mint < total_debt_amount , and the user cannot fully repay it only through the current

protocol.

// Handle CIRCLE repayment// Handle CIRCLE repayment
 ifif ((circle_repay circle_repay >> 00)) {{
 letlet vault_manager vault_manager == borrow_global_mut borrow_global_mut<<TroveManagerTroveManager>>((@cdp@cdp));;
 letlet total_debt total_debt == table table::::borrow_mutborrow_mut((&&mut vault_managermut vault_manager..total_debttotal_debt,,
collateral_typecollateral_type));;
 **total_debt total_debt == **total_debt total_debt -- circle_repay circle_repay;;

 letlet circle_coins circle_coins == coin coin::::withdrawwithdraw<<CIRCLECoinCIRCLECoin>>((useruser,, circle_repay circle_repay));;
 coincoin::::burnburn((circle_coinscircle_coins,, &&vault_managervault_manager..circle_burn_capcircle_burn_cap));;

 eventsevents::::emit_debt_repaid_eventemit_debt_repaid_event((user_addruser_addr,, collateral_type collateral_type,, circle_repay circle_repay,,
timestamptimestamp::::now_secondsnow_seconds(())));;
 }};;
 eventsevents::::emit_vessel_updated_eventemit_vessel_updated_event((user_addruser_addr,, collateral_type collateral_type,, new_collateral new_collateral,,
new_debtnew_debt,, timestamptimestamp::::now_secondsnow_seconds(()),,
blockblock::::get_current_block_heightget_current_block_height(()),,eventsevents::::trove_action_adjusttrove_action_adjust(())));;

 // Update or remove position// Update or remove position
 ifif ((new_collateral new_collateral ==== 00 &&&& new_debt new_debt ==== 00)) {{
 positionspositions::::remove_positionremove_position<<CoinTypeCoinType>>((user_addruser_addr));;
 }} elseelse {{
 positionspositions::::update_positionupdate_position<<CoinTypeCoinType>>((
 user_addruser_addr,,

21/41

 new_collateralnew_collateral,,
 new_debtnew_debt,,
 timestamptimestamp::::now_secondsnow_seconds(())
));;
 }};;

Suggestion:

Fix and sync liquidation_reserve and borrow_fee which need to burn.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/41

CMU-8 The Repayer is Charged a Liquidation Fee

Severity: Major

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#283

Descriptions:

In the redeem and repay_or_withdraw functions, the repayer is charged a liquidation fee.

When a position is opened, a liquidation fee is charged as a debt. Usually, the liquidation

incentive is only obtained by the liquidator. In the current contract, the fee is charged by the

contract when the position is not liquidated.

letlet new_debt new_debt == current_debt current_debt -- circle_repay circle_repay;;
......
letlet actual_redemption_amount actual_redemption_amount == ifif ((circle_amount circle_amount >=>= max_redeemable max_redeemable)) {{
 max_redeemablemax_redeemable
 }} elseelse {{
 letlet remaining_debt remaining_debt == debt_amount debt_amount -- circle_amount circle_amount;;
 ifif ((remaining_debt remaining_debt << minimum_debt minimum_debt ++ liquidation_reserve liquidation_reserve)) {{
 // Truncate redemption amount to maintain minimum debt// Truncate redemption amount to maintain minimum debt
 debt_amount debt_amount -- ((minimum_debt minimum_debt ++ liquidation_reserve liquidation_reserve))
 }} elseelse {{
 circle_amountcircle_amount
 }}
 }};;

Suggestion:

Users who legally fully redeem or close their positions should return the liquidation

incentive.

Resolution:

This issue has been fixed. The client achieves the expected reserve of tokens by burning

liquidation reserves.

23/41

CMU-9 Partial Clearing of Batches with Loss of Precision

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move

Descriptions:

In order to liquidate the positions of whales, there are two main restrictions when setting

the minimum ratio limit:

1. debt_to_liquidate >= debt_amount The current liquidation cannot exceed the total debt

2. remaining_debt >= minimum_debt + liquidation_reserve The remaining debt has a

minimum value

The multi-stage execution of partial_liquidate gradually increases the imbalance difference

between collateral and debt as the precision loss ratio increases, so there will be a situation

where the liability is 0, the collateral is not 0, and the collateral remains in the contract.

For example

collateral_to_liquidate = 8000 * 1 / 10000 = 0

8000*333/10000 = 266(0.4)

7734*333/9667 = 266(0.413)

7468*333/9334 = 266(0.428)

7202*333/9001 = 266(0.4443)

// If full liquidation, call liquidate function// If full liquidation, call liquidate function
ifif ((debt_to_liquidate debt_to_liquidate >=>= debt_amount debt_amount)) {{
 liquidateliquidate<<CoinTypeCoinType>>((liquidatorliquidator,, user_addr user_addr));;
 returnreturn
}};; // remaining_debt = debt_amount-debt_to_liquidate>0 89 debt 100 50-40 50// remaining_debt = debt_amount-debt_to_liquidate>0 89 debt 100 50-40 50
25-20 25-20
// remaining_debt > minimum_debt + liquidation_reserve = 10 debt 11// remaining_debt > minimum_debt + liquidation_reserve = 10 debt 11

// Get parameters// Get parameters
letlet minimum_debt minimum_debt == config config::::get_minimum_debtget_minimum_debt<<CoinTypeCoinType>>(());;
letlet liquidation_reserve liquidation_reserve == config config::::get_liquidation_reserveget_liquidation_reserve<<CoinTypeCoinType>>(());;

24/41

letlet liquidation_threshold liquidation_threshold == config config::::get_liquidation_thresholdget_liquidation_threshold<<CoinTypeCoinType>>(());;
letlet liquidation_penalty liquidation_penalty == config config::::get_liquidation_penaltyget_liquidation_penalty<<CoinTypeCoinType>>(());;
letlet liquidation_fee_protocol liquidation_fee_protocol == config config::::get_liquidation_fee_protocolget_liquidation_fee_protocol<<CoinTypeCoinType>>(());;

// Calculate ICR// Calculate ICR
letlet price price == price_oracle price_oracle::::get_priceget_price<<CoinTypeCoinType>>(());;
letlet collateral_value collateral_value == fixed_point32 fixed_point32::::multiply_u64multiply_u64((collateral_amountcollateral_amount,, price price));;
letlet current_ratio current_ratio == ((collateral_value collateral_value ** 1000010000)) // debt_amount debt_amount;;
// Verify position is liquidatable// Verify position is liquidatable
assertassert!!((current_ratio current_ratio << liquidation_threshold liquidation_threshold,, eventsevents::::err_cannot_liquidateerr_cannot_liquidate(())));;

// Verify remaining debt will be above minimum// Verify remaining debt will be above minimum
letlet remaining_debt remaining_debt == debt_amount debt_amount -- debt_to_liquidate debt_to_liquidate;;
assertassert!!((remaining_debt remaining_debt >=>= minimum_debt minimum_debt ++ liquidation_reserve liquidation_reserve,,
eventsevents::::err_invalid_debt_amounterr_invalid_debt_amount(())));;
// Calculate proportional collateral to liquidate// Calculate proportional collateral to liquidate
letlet collateral_to_liquidate collateral_to_liquidate == ((((collateral_amount collateral_amount asas u128 u128)) ** ((debt_to_liquidate debt_to_liquidate asas u128 u128)) //
((debt_amount debt_amount asas u128 u128)) asas u64 u64));;

Suggestion:

Limiting the remainder and minimum value can alleviate the impact of this problem and

prevent small amounts of collateral from being locked in the contract forever.

Resolution:

The customer was aware of this problem and set a minimum lower limit for partial clearing.

The small loss of accuracy was within the expected design range.

25/41

EVE-1 Set the Event Functions to friend

Severity: Minor

Status: Fixed

Code Location:

sources/contracts/events.move#160

Descriptions:

The event functions in the current module are public functions. Anyone can call these

functions to emit logs, which could cause log records to become disorganized.

publicpublic fun fun emit_trove_closedemit_trove_closed((
 useruser:: address address,,
 collateral_typecollateral_type:: TypeInfoTypeInfo,,
 collateral_returnedcollateral_returned:: u64 u64,,
 debt_repaiddebt_repaid:: u64 u64,,
 timestamptimestamp:: u64 u64
)) {{
 eventevent::::emitemit((TroveClosedEventTroveClosedEvent {{
 useruser,,
 collateral_typecollateral_type,,
 collateral_returnedcollateral_returned,,
 debt_repaiddebt_repaid,,
 timestamptimestamp
 }}));;
 }}

Suggestion:

It is recommended to change to friend permission.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

26/41

POR-1 The Supra Oracle could Return a Stale Price

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/price_oracle.move#105-126

Descriptions:

In the get_price_from_supra() function, the protocol fetches the price of an asset from the

Supra Oracle.

 fun fun get_price_from_supraget_price_from_supra((pair_idpair_id:: u32 u32)):: FixedPoint32FixedPoint32 {{
 letlet ((priceprice,, decimals decimals,, _ _,, _ _)) == supra_oracle_storage supra_oracle_storage::::get_priceget_price((pair_idpair_id));;
 letlet decimals_u8 decimals_u8 == ((decimals decimals asas u8 u8));;

However, there is a issue: the protocol does not verify the threshold or validity of the

returned price. This means that the Supra Oracle could return a stale, outdated, or

manipulated price, which could lead to incorrect calculations and potentially severe

consequences for the protocol.

Suggestion:

It is recommended to ensure that the price returned by the oracle is recent by comparing its

timestamp with the current time and verifying that the price is greater than 0.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

27/41

CMU-10 User Lacks Buffer Space

Severity: Medium

Status: Acknowledged

Code Location:

sources/contracts/cdp_multi.move

Descriptions:

Administrators can use set_operation_status to handle some special situations to suspend

the function, but there is no buffer time in the current situation, which may cause users who

are preparing to increase their ICR or other users to be liquidated after resuming the status.

Suggestion:

The client will consider adding time locks to management functions at a later stage.

28/41

CMU-11 Users Can Self-liquidate

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#386

Descriptions:

The liquidate() function allows users to self-liquidate, which is not permitted in most

similar protocols.

publicpublic entry fun entry fun liquidateliquidate((
 liquidatorliquidator:: &&signersigner,,
 user_addruser_addr:: address address
)) acquires acquires ConfigParamsConfigParams,, TroveManagerTroveManager,, UserPositionsTableUserPositionsTable,, SignerCapabilitySignerCapability,,
PriceOraclePriceOracle {{

 assert_trove_activeassert_trove_active((user_addruser_addr));;

 assertassert!!((current_ratio current_ratio << config config..liquidation_thresholdliquidation_threshold,, ERR_CANNOT_LIQUIDATEERR_CANNOT_LIQUIDATE));;
 }}

Suggestion:

It is recommended to check liquidator != user_addr .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

29/41

CMU-12 set_price not Marked as test-only

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#687

Descriptions:

According to the comment, the set_price() function should be test-only for mainnet

deployment. However, the admin can call this function arbitrarily.

 // This function should be test-only for mainnet deployment// This function should be test-only for mainnet deployment
 // Price updates should come from oracle feeds in production// Price updates should come from oracle feeds in production
 publicpublic entry fun set_price entry fun set_price<<CoinTypeCoinType>>((
 adminadmin:: &&signersigner,,
 priceprice:: u64 u64
)) {{
 assertassert!!((signersigner::::address_ofaddress_of((adminadmin)) ==== @cdp @cdp,, eventsevents::::err_not_adminerr_not_admin(())));;
 price_oracleprice_oracle::::set_priceset_price<<CoinTypeCoinType>>((price price));;
 }}

Suggestion:

It is recommended to mark set_price as test-only.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

30/41

CMU-13 The User's Position may not be Liquidated

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#413

Descriptions:

The repay_or_withdraw() function allows users to withdraw collateral, while the liquidate()

function requires that the current collateralization ratio (current_ratio) be greater than

100% (10000 in basis points) to initiate liquidation.

 publicpublic entry fun repay_or_withdraw entry fun repay_or_withdraw<<CoinTypeCoinType>>((
 useruser:: &&signersigner,,
 collateral_withdrawcollateral_withdraw:: u64 u64,,
 circle_repaycircle_repay:: u64 u64
)) acquires acquires TroveManagerTroveManager,, SignerCapabilitySignerCapability {{
 letlet user_addr user_addr == signer signer::::address_ofaddress_of((useruser));;
 positionspositions::::assert_position_existsassert_position_exists<<CoinTypeCoinType>>((user_addruser_addr));;
 letlet collateral_type collateral_type == type_info type_info::::type_oftype_of<<CoinTypeCoinType>>(());;

 // let position = table::borrow_mut(user_positions, collateral_type);// let position = table::borrow_mut(user_positions, collateral_type);
 letlet ((current_collateralcurrent_collateral,, current_debt current_debt,, _ _,, _ _)) == positions positions::::get_positionget_position<<CoinTypeCoinType>>
((user_addruser_addr));;

 // Verify balances// Verify balances
 assertassert!!((current_collateral current_collateral >=>= collateral_withdraw collateral_withdraw,,
eventsevents::::err_insufficient_collateral_balanceerr_insufficient_collateral_balance(())));;
 assertassert!!((current_debt current_debt >=>= circle_repay circle_repay,, eventsevents::::err_insufficient_debt_balanceerr_insufficient_debt_balance(())));;

 // Verify position is liquidatable (ICR < liquidation threshold)// Verify position is liquidatable (ICR < liquidation threshold)
 assertassert!!((current_ratio current_ratio << liquidation_threshold liquidation_threshold,, eventsevents::::err_cannot_liquidateerr_cannot_liquidate(())));;

 // If ICR <= 100%, revert transaction// If ICR <= 100%, revert transaction
 assertassert!!((current_ratio current_ratio >> 1000010000,, eventsevents::::err_invalid_liquidationerr_invalid_liquidation(())));;

31/41

However, there is a attack path that exploits this logic, allowing a user to manipulate their

position to avoid liquidation. Here’s a detailed explanation of the issue and how it can be

addressed:

The Attack Path

1. Initial Deposit:

Alice deposits 10 units of collateral when the collateral price is 12. The total

collateral value is 10 * 12 = 120 .

Alice mints 120 debt tokens against this collateral. At this point, the

collateralization ratio is:

collateralization_ratio collateralization_ratio == ((collateral_value collateral_value ** 1000010000 // debt debt))
 == ((120120**1000010000 // 120120))
 == 1000010000 ((100100%%))

2. Price Increase and Withdrawal:

The price of the collateral increases to 24. Alice calls repay_or_withdraw() to

withdraw 5 units of collateral.

After withdrawal, Alice has 5 units of collateral left, with a total collateral value of

5 * 24 = 120 .

The debt remains 120, so the collateralization ratio is still:

collateralization_ratio = (120*10000 / 120)

 = 10000 (100%)

3. Price Drop and Liquidation Check:

The price of the collateral drops back to 10. The value of the remaining collateral

is now 5 * 10 = 50 .

The collateralization ratio becomes:

collateralization_ratio = (50 *10000/ 120)

 ≈ 4166 (41.66%)

The position is now undercollateralized and should be liquidated. However, the

liquidate() function requires current_ratio > 10000 to initiate liquidation. Since

32/41

4166 < 10000 , the position cannot be liquidated.

Suggestion:

Resolution:

This issue has been fixed. The client has adopted our suggestions.

33/41

CMU-14 The Verification of Total Distribution is Vulnerable to
Precision Loss

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#468

Descriptions:

In the liquidate() function, the protocol requires that the sum of the liquidator reward,

protocol fee, and user refund equals the total collateral amount being liquidated.

assertassert!!((liquidator_reward_in_collateral liquidator_reward_in_collateral ++ protocol_fee_in_collateral protocol_fee_in_collateral ++ user_refund user_refund ====
collateral_amountcollateral_amount,, eventsevents::::err_invalid_liquidationerr_invalid_liquidation(())));;

However, there is a issue with this requirement: precision loss in the calculations of

liquidator_reward_in_collateral and protocol_fee_in_collateral can cause the condition to

fail, even when the logic is correct.

 letlet penalty_amount_in_collateral penalty_amount_in_collateral == fixed_point32 fixed_point32::::divide_u64divide_u64((penalty_amountpenalty_amount,, price price));;
 letlet protocol_fee_in_collateral protocol_fee_in_collateral == ((penalty_amount_in_collateral penalty_amount_in_collateral **
liquidation_fee_protocolliquidation_fee_protocol)) // 1000010000;;
 letlet liquidator_penalty_in_collateral liquidator_penalty_in_collateral == penalty_amount_in_collateral penalty_amount_in_collateral --
protocol_fee_in_collateralprotocol_fee_in_collateral;;

 // // Calculate total penalty and possible refund// // Calculate total penalty and possible refund
 letlet total_penalty_in_collateral total_penalty_in_collateral == penalty_amount_in_collateral penalty_amount_in_collateral ++
fixed_point32fixed_point32::::divide_u64divide_u64((((debt_amountdebt_amount)),, price price));;

 letlet liquidator_reward_in_collateral liquidator_reward_in_collateral==liquidator_penalty_in_collateralliquidator_penalty_in_collateral++
fixed_point32fixed_point32::::divide_u64divide_u64((debt_amountdebt_amount,, price price)) ;;
 letlet user_refund user_refund == ifif ((total_penalty_in_collateral total_penalty_in_collateral << collateral_amount collateral_amount)) {{
 collateral_amount collateral_amount -- total_penalty_in_collateral total_penalty_in_collateral
 }} elseelse {{
 00
 }};;

34/41

Suggestion:

Resolution:

This issue has been fixed. The client has adopted our suggestions.

35/41

CMU-15 Missing a bad Debt Position Process

Severity: Medium

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#386-480

Descriptions:

In a DeFi protocol, the liquidation mechanism is designed to resolve undercollateralized

positions by selling the collateral to repay the debt. However, there are scenarios where

liquidation may not be profitable or some positions may not be liquidatable. Hence,

implementing a bad debt position process is essential for managing undercollateralized

positions that cannot be liquidated profitably or at all.

Suggestion:

It is recommended to implement a bad debt position process.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

36/41

CMU-16 Missing Fee Validation in redeem() Function

Severity: Minor

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#691-693

Descriptions:

In the redeem() function, the protocol deducts a redemption fee and a user gratuity fee

before transferring collateral to the user. However, there is no validation to ensure these

fees are greater than zero.

 letlet ((collateral_amountcollateral_amount,, debt_amount debt_amount,, _ _,, _ _)) == positions positions::::get_positionget_position<<CoinTypeCoinType>>
((provider_addrprovider_addr));;
 letlet redemption_fee redemption_fee == config config::::get_redemption_feeget_redemption_fee<<CoinTypeCoinType>>(());;
 letlet redemption_fee_gratuity redemption_fee_gratuity == config config::::get_redemption_fee_gratuityget_redemption_fee_gratuity<<CoinTypeCoinType>>(());;
 letlet minimum_debt minimum_debt == config config::::get_minimum_debtget_minimum_debt<<CoinTypeCoinType>>(());;
 letlet liquidation_reserve liquidation_reserve == config config::::get_liquidation_reserveget_liquidation_reserve<<CoinTypeCoinType>>(());;

A bad actor can user small amount to avoid the fee to close the trove.

Suggestion:

It is recommended to ensure the fee is greater than 0.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

37/41

CMU-17 Lack of Event

Severity: Minor

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#802

Descriptions:

We should add event monitoring for privileged operations and important functions modified

by administrators, because these functions are very important and are usually difficult to

track directly through transactions on the aptos/sui chain.``` js public entry fun set_oracle(

admin: &signer, new_oracle_id: u32, new_price_age: u64) { // Verify admin assert!

(signer::address_of(admin) == @cdp, events::err_not_admin()); price_oracle::update_oracle(

new_oracle_id, new_price_age); } public entry fun set_operation_status(admin: &signer,

open_trove: bool, borrow: bool, deposit: bool, redeem: bool) { assert!

(signer::address_of(admin) == @cdp, events::err_not_admin());

config::set_operation_status<CoinType>(open_trove, borrow, deposit, rede

} public entry fun set_fee_collector(admin: &signer, new_fee_collector: address) { assert!

(signer::address_of(admin) == @cdp, events::err_not_admin());

config::set_fee_collector(new_fee_collector); }

Suggestion:

Recommend adding events

Resolution:

This issue has been fixed. The client has adopted our suggestions.

38/41

CMU-18 supra_oracle_storage is Not Available

Severity: Informational

Status: Fixed

Code Location:

sources/contracts/cdp_multi.move#1

Descriptions:

The contract address pushed by supra_oracle_storage is not as expected. The

implementation may be used incorrectly. The storage contract on Aptos is marked as

N/A .

use supra_oracleuse supra_oracle::::supra_oracle_storagesupra_oracle_storage;;

https://docs.supra.com/oracles/data-feeds/pull-oracle/networks

Suggestion:

The confirmed oracle pull address will be used in the official deployment.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

39/41

https://docs.supra.com/oracles/data-feeds/pull-oracle/networks

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

40/41

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

41/41

	827_page1.pdf
	827_page2.pdf

