
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Nemo

Mon Dec 30 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Nemo Audit Report

1 Executive Summary

1.1 Project Information

Description Nemo Protocol is a decentralized finance application.

Type DeFi

Auditors MoveBit

Timeline Thu Nov 07 2024 - Mon Dec 30 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/nemo-protocol/nemo

Commits 1efcf5aef3e9eaf70de56f6e5e727c4937d50119
62e73571b8cbdd363871f57473ae846a4e37d258
77b2640af5c9f30583dec6b7b39778d99e31551f
fa7fae52b59733a526ca15faa4af2c59b4f0a4c4

1/46

https://github.com/nemo-protocol/nemo
https://github.com/nemo-protocol/nemo/tree/1efcf5aef3e9eaf70de56f6e5e727c4937d50119
https://github.com/nemo-protocol/nemo/tree/62e73571b8cbdd363871f57473ae846a4e37d258
https://github.com/nemo-protocol/nemo/tree/77b2640af5c9f30583dec6b7b39778d99e31551f
https://github.com/nemo-protocol/nemo/tree/fa7fae52b59733a526ca15faa4af2c59b4f0a4c4

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

FAC nemo/sources/market/factory.mov
e

051e7cb4161646384fc779d2fb7fcf
0c1a2b6d3c

MMA12 nemo/sources/market/market_mat
h.move

da65dff435489a8ab455f42c9e72bf
b3eaa79b86

MGL nemo/sources/market/market_glo
bal.move

06cb0217f0f3c8a789632afb1f6fd8
2ae080ae00

MPO nemo/sources/market/market_posi
tion.move

4b799aff8c5283a7be9ba84ea0e47
789a76c6c42

MAR1 nemo/sources/market/market.mov
e

e3b4a06bfe7dc95d47074ebb992e
48cfa67a5990

SY nemo/sources/sy.move bf6c3f6d73e34fca5f73e3a736721c
9a7b372343

YFA1 nemo/sources/py/yield_factory.mo
ve

4e843a33496ada6ecc6fa9ba76944
1951220260e

PY nemo/sources/py/py.move 532f24cf1f978e42802f96d5e61081
9990a2bc55

PPO nemo/sources/py/py_position.mov
e

e0d9a65572d97ad95e370af28eb7
1033a718c340

ORA nemo/sources/oracle.move d49cb97ee3bb44c24a2954112f90
35a7fcd364d0

2/46

1.3 Issue Statistic

Item Count Fixed Partially Fixed Acknowledged

Total 30 25 1 4

Informational 5 3 0 2

Minor 8 5 1 2

Medium 4 4 0 0

Major 8 8 0 0

Critical 5 5 0 0

3/46

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/46

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/46

2 Summary

This report has been commissioned by Nemo Protocol to identify any potential issues and
vulnerabilities in the source code of the Nemo smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 30 issues of varying severity, listed below.

ID Title Severity Status

PY-1 Incorrect Reward Update Method
In update_user_interest Function

Critical Fixed

PY-2 Mismatch Between Function Name
And Implementation In
borrow_pt_amount

Critical Fixed

PY-3 Price Cache Time is Too Long Critical Fixed

PY-4 get_price() Function Precision
Limit

Informational Fixed

SY-1 FlashLoan Has Unnecessary
store Capabilities

Medium Fixed

SY-2 Invalid Slippage Check Minor Fixed

ACL-1 remove_role Doesn't Check For
The Existence Of Permissions

Major Fixed

FAC-1 Potential DoS Vulnerability In
create_new_market_with_raw_valu

es Function

Major Fixed

FAC-2 Potential Dos of create_py() Major Fixed

6/46

FAC-3 The Market Creation Time May be
Too Small

Minor Fixed

FP6-1 Inaccurate Calculation in
truncate_up()

Major Fixed

MAR-1 get_rate_anchor Status Update
Error

Major Fixed

MAR-2 The Initial Liquidity Provider Will
Lose Some LP

Minor Acknowledged

MAR-3 swap_exact_pt_for_sy() Function
Lacks Expiration Check

Minor Fixed

MAR-4 Initial Liquidity Ratio Manipulation
Lacks Slippage Control

Minor Partially Fixed

MAR-5 Computational Optimization Informational Fixed

MMA-1 Unreachable Instance of
market_exchange_rate_below_one

Error

Informational Fixed

MPO-1 Lacks Authentication Critical Fixed

ORA-1 Instantaneous Price Dependence Medium Fixed

ORA-2 Epoch Issues Minor Fixed

YFA-1 SyInterestPostExpiry Calculation
Error

Critical Fixed

YFA-2 Lack of Permission Validation for
init_config()

Major Fixed

YFA-3 Inconsistency Between PyState
and PyPosition

Major Fixed

7/46

YFA-4 Lack of Version Check Medium Fixed

YFA-5 Expiration Time Boundary Value
Check Error

Minor Fixed

MAR1-1 LP Slippage Check Issues Major Fixed

MAR1-2 add_liquidity_single_sy Lack of
Market CAP checks

Medium Fixed

MAR1-3 Code Optimization Minor Acknowledged

MAR1-4 get_market_state Does Not
Determine Whether The Market Is
Empty

Informational Acknowledged

MAR1-5 reward_rate Field Design Issues Informational Acknowledged

8/46

3 Participant Process

Here are the relevant actors with their respective abilities within the Nemo Smart Contract :
The client replied that:

1. All rights of the contract are managed by the foundation.

2. Only users can deposit and withdraw money under any conditions, and the foundation

has no right to do so.

Owner

The owner can call the create_new_market_with_raw_values function to create a new

market.

The owner can call the register_underlying_token to create underlying_token .

The owner can call the update_config function to update the MarketFactoryConfig

info.

The owner can use the add_role function to add a role to a member.

User

User can wrap the interest-bearing token into SYCoin through sy , which can be

divided into PT/YT, participate in Market transactions, and get back the principal

through redemption.

User needs to get the latest price through the oracle contract when using functions in

the market.

User can add or remove liquidity in the market contract.

User can use the swap function in the market contract to exchange SY/PT/YT.

9/46

4 Findings

PY-1 Incorrect Reward Update Method In
update_user_interest Function

Severity: Critical

Status: Fixed

Code Location:

nemo/sources/py/py.move#415

Descriptions:

In the update_user_interest function, the user's reward is being overwritten using the

set_accured method instead of updating it incrementally with a cumulative method. This

leads to a loss of previously accrued rewards, as the new value completely replaces the

existing one.

Suggestion:

It is recommended to replace the call to set_accured(accured) with a method that properly

accumulates the user's rewards.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/46

PY-2 Mismatch Between Function Name And Implementation
In borrow_pt_amount

Severity: Critical

Status: Fixed

Code Location:

nemo/sources/py/py.move#110

Descriptions:

The function borrow_pt_amount implies its purpose is to borrow an amount of PT

(Principal Token). However, the implementation incorrectly uses the mint_py function with

the first parameter set to amount, which represents the YT (Yield Token) value, not the PT

value. This results in the function minting YT instead of borrowing PT, leading to a

discrepancy between the function's name, its intended behavior, and the actual

implementation.

Suggestion:

It is recommended that the code be changed to the correct logic.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/46

PY-3 Price Cache Time is Too Long

Severity: Critical

Status: Fixed

Code Location:

nemo/sources/py/py.move#304

Descriptions:

When do_cache_index_same_block is true, when using cached prices, the corresponding

update time period is epoch. The epoch time in sui is usually about 24 hours. In the pendle

project, block.number is used, which is usually about 15 seconds. If the cached price is too

long and new_index is not used, serious errors in price calculation will occur.

publicpublic fun current_py_index fun current_py_index<<SYCoinSYCoin:: drop drop>>((
 do_cache_index_same_blockdo_cache_index_same_block:: bool bool,,
 exchange_rateexchange_rate:: FixedPoint64FixedPoint64,,
 py_statepy_state:: &&mut mut PyStatePyState<<SYCoinSYCoin>>,,
 ctxctx:: &&mut mut TxContextTxContext,,
)):: FixedPoint64FixedPoint64 {{
 ifif ((do_cache_index_same_block do_cache_index_same_block &&&& py_state py_state..py_index_last_updated_epochpy_index_last_updated_epoch ====
ctxctx..epochepoch(()))) {{
 py_statepy_state..py_index_storedpy_index_stored

Suggestion:

It is recommended to use cached prices for shorter time periods.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/46

PY-4 get_price() Function Precision Limit

Severity: Informational

Status: Fixed

Code Location:

nemo/sources/py/py.move

Descriptions:

The get_price() function extracts the price information from PriceVoucher, but in the

calc_scoin_to_coin() function, the price calculation relies on a fixed unit (unit = 1e9), which

means that only tokens that meet the expected precision can calculate the price correctly.

For example, when the token precision is 1e18, the price of deflationary tokens and transfer

tokens may be calculated incorrectly.

Suggestion:

It is recommended to use only the intended kind of tokens.

Resolution:

The client avoids this risk through manual control.

13/46

SY-1 FlashLoan Has Unnecessary store Capabilities

Severity: Medium

Status: Fixed

Code Location:

nemo/sources/sy.move#37

Descriptions:

Structure FlashLoan is used as a receipt for sy loaned SYCoin and can only be destroyed

in the repay function. This is consistent with the Hot-Potato design pattern, so

FlashLoan does not need a store capability to ensure that it must be destroyed within a

transaction.

Suggestion:

It is recommended that unneeded capabilities be removed.

14/46

SY-2 Invalid Slippage Check

Severity: Minor

Status: Fixed

Code Location:

nemo/sources/sy.move

Descriptions:

The deposit function and the redeem function are used to deposit YieldCoin type tokens

into the system and return the corresponding SYCoin type voucher. The min_amount_out

parameter is used to ensure that the SYCoin obtained by the user after depositing the

token is not less than the expected minimum value. This parameter is provided by the user,

not dynamically calculated according to market conditions, so it cannot effectively prevent

slippage.

assertassert!!((
 share share >=>= min_amount_out min_amount_out,,
 errorerror::::sy_insufficient_sharesOutsy_insufficient_sharesOut(())
));;

Suggestion:

Sy tokens may use exchangerate to actually execute how many tokens are needed to mint.

When packaging, it is necessary to check based on the actual number. It is recommended to

check the slippage as the actual number of tokens.

15/46

ACL-1 remove_role Doesn't Check For The Existence Of
Permissions

Severity: Major

Status: Fixed

Code Location:

lib/sources/acl.move#116

Descriptions:

The remove_role function removes a user's permissions without checking whether the role

of the user exists or not, and removing it directly may cause problems. For example, if the

user's permissions are currently 1<<11 , and admin removes a non-existing permission

such as 1<<5, the result is 1<<11-1<<5 according to the code, which results in the user

having all permissions from 6-10.

>>>>>> binbin((((11<<<<1111))))
'0b100000000000''0b100000000000'
>>>>>> binbin((((11<<<<55))))
'0b100000''0b100000'
>>>>>> binbin((((11<<<<1111))--((11<<<<55))))
'0b11111100000''0b11111100000'

Suggestion:

It is recommended to determine if the role exists when removing it.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/46

FAC-1 Potential DoS Vulnerability In
create_new_market_with_raw_values Function

Severity: Major

Status: Fixed

Code Location:

nemo/sources/market/factory.move

Descriptions:

A function can only be called by a user with create_market_role permission, then the

function will call config.add(market_id); to add the market_id to the MarketFactoryConfig .

But since market_global::add is a public function and MarketFactoryConfig is a share

object, it means that any user can directly call add function to add market_id to

MarketFactoryConfig which may cause the bag in MarketFactoryConfig to be too large.

Suggestion:

It is recommended to change the permissions of the add function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/46

FAC-2 Potential Dos of create_py()

Severity: Major

Status: Fixed

Code Location:

nemo/sources/market/factory.move#32

Descriptions:

The lack of permission checking for yield_factory::create can lead to DOS problems where a

user may call the create_py function to set a malicious expiry parameter, resulting in

normal users no longer being able to create.

Suggestion:

It's recommended to take measures to avoid this issue.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/46

FAC-3 The Market Creation Time May be Too Small

Severity: Minor

Status: Fixed

Code Location:

nemo/sources/market/factory.move#93

Descriptions:

When creating a market, the creator checks that the expiry is greater than the current

time, and does not check the minimum cycle time, which may result in the creation of an

expiry that is too small.

assertassert!!((
 expiry expiry >> clock clock..timestamp_mstimestamp_ms(()),,
 errorerror::::market_pt_expiredmarket_pt_expired(())
));;

Suggestion:

It is recommended to modify the code to:

expiry expiry >> clock clock..timestamp_mstimestamp_ms(()) ++ confing confing..minTimeminTime

19/46

FP6-1 Inaccurate Calculation in truncate_up()

Severity: Major

Status: Fixed

Code Location:

nemo_math/sources/fixed_point64.move#70

Descriptions:

In the truncate_up() , the truncated_val results from a 64-bit right shift. If it is shifted right

by another 64 bits, the result will be 0. The correct way to round up should be to perform a

64-bit left shift and compare it with the original value.

 publicpublic fun fun truncate_uptruncate_up((valval:: FixedPoint64FixedPoint64)):: u64 u64 {{
 letlet truncated_val truncated_val == ((valval..valuevalue >>>> 6464)) asas u64 u64;;
 ifif((((((truncated_val truncated_val asas u256 u256)) >>>> 6464)) << ((valval..valuevalue asas u256 u256)))) {{
 truncated_val truncated_val ++ 11
 }} elseelse {{
 truncated_valtruncated_val
 }}
 }}

Suggestion:

It is recommended to update ((truncated_val as u256) >> 64 to ((truncated_val as u256) <<

64 .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/46

MAR-1 get_rate_anchor Status Update Error

Severity: Major

Status: Fixed

Code Location:

nemo/sources/market/market.move#777

Descriptions:

In the non-initialized state, when Total is not equal to 0, rate_anchor should be updated. In

the else branch of the mint_lp_internal function, when market.lp_supply != 0 , the current

function state should be set to false to update the scalar.

ifif((!!initinit)) {{
 rate_anchor rate_anchor == market_math market_math::::get_rate_anchorget_rate_anchor((

letlet exchange_rate exchange_rate == get_exchange_rateget_exchange_rate((
factory_configfactory_config,,
py_statepy_state,,
marketmarket,,
clockclock,,
fixed_point64fixed_point64::::create_from_raw_valuecreate_from_raw_value((price_rateprice_rate)),,
truetrue,, //bug//bug
ctxctx
));;

Suggestion:

It is recommended to modify the status(false) of the two get_exchange_rate() functions in

the else branch to update rate_anchor .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/46

MAR-2 The Initial Liquidity Provider Will Lose Some LP

Severity: Minor

Status: Acknowledged

Code Location:

nemo/sources/market/market.move#177

Descriptions:

In the mint_lp_internal() function, when market.lp_supply is 0, the system subtracts a

constant MINIMUM_LIQUIDITY from the liquidity calculation. This means that the actual

amount of liquidity tokens a user receives when providing initial liquidity will be reduced by

MINIMUM_LIQUIDITY . This reduction will not be returned to the user, but will remain in the

market.

On the other hand, lp_to_user may be calculated as 0, especially when liquidity is equal to

MINIMUM_LIQUIDITY . This means that users may not receive any liquidity tokens when

providing liquidity.

ifif((marketmarket..lp_supplylp_supply ==== 00)) {{
 letlet liquidity liquidity == math128 math128::::sqrtsqrt((((pt_amount_mut pt_amount_mut asas u128 u128)) ** ((sy_value sy_value asas u128 u128)))) asas u64 u64;;
 assertassert!!((liquidity liquidity >=>= MINIMUM_LIQUIDITYMINIMUM_LIQUIDITY,, errorerror::::market_liquidity_too_lowmarket_liquidity_too_low(())));;
 letlet lp_to_user lp_to_user== liquidity liquidity -- MINIMUM_LIQUIDITYMINIMUM_LIQUIDITY;;
 letlet lp_reserve lp_reserve == MINIMUM_LIQUIDITYMINIMUM_LIQUIDITY;;
 letlet sy_balance sy_balance == sy_amount_mut sy_amount_mut..splitsplit((sy_valuesy_value));;
 // deduct pt from user // deduct pt from user
 pypy::::split_ptsplit_pt((
 py_positionpy_position,,
 pt_amount_mutpt_amount_mut
));;
 // add pt to market// add pt to market
 marketmarket..total_pttotal_pt == market market..total_pttotal_pt ++ pt_amount_mut pt_amount_mut;;
 // add sy to market// add sy to market
 marketmarket..total_sytotal_sy..joinjoin((sy_balancesy_balance));;
 // add lp to market supply// add lp to market supply
 marketmarket..lp_supplylp_supply == lp_to_user lp_to_user ++ lp_reserve lp_reserve;;
 // add lp to user// add lp to user
 market_positionmarket_position..set_lp_amountset_lp_amount((lp_to_userlp_to_user));;

22/46

Suggestion:

It is recommended that when calculating lp_to_user, ensure that the result is always greater

than 0, and return the overcharged amount to the user after the time expires.

23/46

MAR-3 swap_exact_pt_for_sy() Function Lacks Expiration
Check

Severity: Minor

Status: Fixed

Code Location:

nemo/sources/market/market.move#578

Descriptions:

The swap_exact_pt_for_sy() function calls swap_exact_pt_for_sy_internal without checking

the expiration time. The execution let time_to_expire = market.expiry -

clock::timestamp_ms(clock); may have exceeded market.expiry , resulting in execution

failure.

Suggestion:

It is recommended to add expiration time check in swap_exact_yt_for_sy() and

swap_exact_pt_for_sy() , as well as swap_sy_for_exact_pt() .

24/46

MAR-4 Initial Liquidity Ratio Manipulation Lacks Slippage
Control

Severity: Minor

Status: Partially Fixed

Code Location:

nemo/sources/market/market.move

Descriptions:

The initial liquidity ratio manipulation in the mint_lp() function lacks slippage control. It

does not check the "minOut" amount, which means that when the robot monitors the initial

liquidity addition from the memory pool, it can run ahead, resulting in an unexpected

liquidity ratio added by the user, causing an unexpected exchangeRate .

publicpublic fun mint_lp fun mint_lp<<SYCoinSYCoin:: drop drop>>((
 versionversion:: &&VersionVersion,,
 sy_coinsy_coin:: CoinCoin<<SYCoinSYCoin>>,,
 pt_amountpt_amount:: u64 u64,,
 price_voucherprice_voucher:: oracle oracle::::PriceVouchPriceVouch
 py_positionpy_position:: &&mut py_positionmut py_position::::PyPy
 py_statepy_state:: &&mut pymut py::::PyStatePyState<<SYCoinSYCoin
 factory_configfactory_config:: &&YieldFactoryConfYieldFactoryConf
 marketmarket:: &&mut mut MarketStateMarketState<<SYCoinSYCoin>>,,
 clockclock:: &&clockclock::::ClockClock,,
 ctxctx:: &&mut tx_contextmut tx_context::::TxContextTxContext
)):: ((CoinCoin<<SYCoinSYCoin>>,, MarketPositionMarketPosition)) {{
versionversion::::assert_current_versionassert_current_version((versionversion));;
letlet ((py_balancepy_balance,, _ _)) == py py::::get_py_amountget_py_amount((py_positionpy_position));;
assertassert!!((clockclock::::timestamp_mstimestamp_ms((clockclock)) << py_position py_position..expiryexpiry(()),, errorerror::::market_expiredmarket_expired(())));;
assertassert!!((pt_amount pt_amount >> 00,, errorerror::::market_pt_amount_is_zeromarket_pt_amount_is_zero(())));;
assertassert!!((py_balance py_balance >=>= pt_amount pt_amount,, errorerror::::market_insufficient_pt_in_for_mint_lpmarket_insufficient_pt_in_for_mint_lp(())));;
assertassert!!((py_positionpy_position..py_state_idpy_state_id(()) ==== market market..py_state_idpy_state_id,, errorerror::::market_invalid_py_statemarket_invalid_py_state(())));;
......
assertassert!!((balancebalance::::valuevalue((&&sy_amountsy_amount)) >> 00,, errorerror::::market_sy_amount_is_zeromarket_sy_amount_is_zero(())));;
......
assertassert!!((liquidity liquidity >=>= MINIMUM_LIQUIDITYMINIMUM_LIQUIDITY,, errorerror::::market_liquidity_too_lowmarket_liquidity_too_low(())));;
......

25/46

assertassert!!((!!marketmarket..last_ln_implied_ratelast_ln_implied_rate..equalequal((fixed_point64fixed_point64::::zerozero(()))),,
errorerror::::market_ln_implied_rate_is_zeromarket_ln_implied_rate_is_zero(())));;

In the current implementation, the initial liquidity provider can add any amount of PT/SY (as

long as last_ln_implied_rate > 0), the next liquidity provider must provide at the same rate.

This allows an attacker to manipulate the exchange rate by adding liquidity with a large

amount of PT and a small amount of SY.

marketmarket..last_ln_implied_ratelast_ln_implied_rate == get_ln_implied_rateget_ln_implied_rate((exchange_rateexchange_rate,, time_to_expire time_to_expire));;
assertassert!!((!!marketmarket..last_ln_implied_ratelast_ln_implied_rate..equalequal((fixed_point64fixed_point64::::zerozero(()))),,
errorerror::::market_ln_implied_rate_is_zeromarket_ln_implied_rate_is_zero(())));;

example�

scalarRoot = 1e9

initialAnchor = 1.1e9

timeExporiy = 1 year

user call mint_lp() as:

syDesired = 10000e9

ptDesired = 10000e9

minLpOut = 0

attacker front-run user'tx call mint_lp() as:

syDesired = 2000

ptDesired = 50000

minLpOut = 0

Market State:

totalsy = 2000

totalpt = 50000

totallp = 2000

after this user'tx call mint:

netlppt = ptDesired * market.totalLp / market.totalPt = 400e9

netlpsy = syDesired * market.totalLp / market.totalsy = 10000e9

Market State:

totalsy = 400e9+2000

26/46

totalpt = 10000e9 + 50000

totallp = 400e9+2000

After this step, the exchange rate and implied rate both change by dozens of times due to

the pt/sy ratio.

At this point, the attacker can take advantage of the manipulated exchange rate, back-run

the user'tx, and make a profit.

Suggestion:

It is recommended to check the PT/SY equivalent when trading for the first time.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

27/46

MAR-5 Computational Optimization

Severity: Informational

Status: Fixed

Code Location:

nemo/sources/market/market.move#196

Descriptions:

Note that the total amount of p_to_user + lp_reserve calculated in market.lp_supply is

exactly equal to liquidity . We can use liquidity directly to reduce the contract calculation

amount, optimize the code and save gas.

marketmarket..lp_supplylp_supply == lp_to_user lp_to_user ++ lp_reserve lp_reserve;;

Suggestion:

It is recommended to use liquidity to replace the calculation.

28/46

MMA-1 Unreachable Instance of
market_exchange_rate_below_one Error

Severity: Informational

Status: Fixed

Code Location:

nemo/sources/market/market_math.move#28

Descriptions:

The market_exchange_rate_below_one error code will never be triggered, since

exchange_rate is calculated by get_exchange_rate_from_implied_rate , and the values by

the exponential function are all greater than ONE so this will not happen.

Suggestion:

It is recommended that meaningless code be removed based on protocol design

considerations.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

29/46

MPO-1 Lacks Authentication

Severity: Critical

Status: Fixed

Code Location:

nemo/sources/market/market_position.move#104

Descriptions:

The reference function in the market_position contract is public. It does not check any

permissions to add or set market_position.lp_amount . As long as the user uses mint_lp to

obtain the MarketPosition object, it can be modified directly.

publicpublic fun fun set_lp_amountset_lp_amount((
 market_positionmarket_position:: &&mut mut MarketPositionMarketPosition,,
 lp_amountlp_amount:: u64 u64
)) {{
 market_positionmarket_position..lp_amountlp_amount == lp_amount lp_amount;;
}}
publicpublic fun fun increase_lp_amountincrease_lp_amount((
 market_positionmarket_position:: &&mut mut MarketPositionMarketPosition,,
 lp_amountlp_amount:: u64 u64
)) {{
 market_positionmarket_position..lp_amountlp_amount == market_position market_position..lp_amountlp_amount ++ lp_amount lp_amount;;
}}
publicpublic fun fun decrease_lp_amountdecrease_lp_amount((
 market_positionmarket_position:: &&mut mut MarketPositionMarketPosition,,
 lp_amountlp_amount:: u64 u64
)) {{
 market_positionmarket_position..lp_amountlp_amount == market_position market_position..lp_amountlp_amount -- lp_amount lp_amount;;
}}

On the other hand, PyPosition can also modify accured directly through the set function.

publicpublic fun fun set_accuredset_accured((
 py_positionpy_position:: &&mut mut PyPositionPyPosition,,
 accuredaccured:: FixedPoint64FixedPoint64
)) {{

30/46

 py_positionpy_position..accuredaccured == accured accured
}}

Also, the update_current_exchange_rate function does not have any permission control,

resulting in anyone being able to modify current_exchange_rate . The lack of permission

checking for yield_factory::create can lead to DOS problems where a user may call the

create_py function to set and malicious expiry parameter, resulting in normal users no

longer being able to create.

Suggestion:

It is recommended to make sure that this is designed in accordance with the protocol and to

add permission checks to the function.

31/46

ORA-1 Instantaneous Price Dependence

Severity: Medium

Status: Fixed

Code Location:

nemo/sources/oracle.move

Descriptions:

In the calc_scoin_to_coin() function, the price calculation depends on the instantaneous

price calculation of protocol::market , which includes the stock, debt, cash, and revenue of

the token. This dependency may lead to the following problems:

Users can use the instantaneous high price of the market to obtain a PriceVoucher when

calling the get_price_voucher_from_x_oracle function. Since the price is calculated based on

the current state of the market, users can artificially increase the price by manipulating the

market state (for example, increasing the stock of tokens or reducing debt in the short

term).

Users can use the high-priced PriceVouchers they obtain to mint more liquidity tokens (LP)

for arbitrage.

 publicpublic fun get_price_voucher_from_x_oracle fun get_price_voucher_from_x_oracle<<SYCoinSYCoin:: drop drop,, UnderlyingTokenUnderlyingToken:: drop drop>>((
 versionversion:: &&protocolprotocol::::versionversion::::VersionVersion,,
 marketmarket:: &&mut protocolmut protocol::::marketmarket::::MarketMarket,,
 sy_statesy_state:: &&sysy::::StateState,,
 clockclock:: &&ClockClock,,
 ctxctx:: &&TxContextTxContext
)):: PriceVoucherPriceVoucher<<SYCoinSYCoin>> {{
 assertassert!!((
 sysy::::is_sy_bind_with_underlying_tokenis_sy_bind_with_underlying_token<<UnderlyingTokenUnderlyingToken,, SYCoinSYCoin>>((sy_statesy_state)),,
 errorerror::::sy_not_supportedsy_not_supported(())
));;
 letlet unit unit == 10000000001000000000;;
 letlet coin_output coin_output == calc_scoin_to_coincalc_scoin_to_coin((
 versionversion,,
 marketmarket,,
 type_nametype_name::::getget<<UnderlyingTokenUnderlyingToken>>(()),,
 clockclock,,

32/46

 unitunit
));;
 letlet rate rate == fixed_point64 fixed_point64::::create_from_rationalcreate_from_rational((coin_output coin_output asas u128 u128,, unit unit asas u128 u128));;

 PriceVoucherPriceVoucher<<SYCoinSYCoin>> {{
 underlying_priceunderlying_price:: rate rate..get_raw_valueget_raw_value(()),,
 epochepoch:: ctx ctx..epochepoch(())
 }}
 }}

On the other hand, when the user calls the get_price_voucher_from_x_oracle() function, we

assume that the vendor code is updated once every 1000 seconds. The user calls and

executes at the 999th second and the 1001st second, which will rely on two different prices

for calculation. The root cause is that the price used by the user is updated when calling,

while the price used by the contract is automatically obtained periodically, and they are not

synchronized in process.

Suggestion:

It is recommended to confirm that the problem affects the price calculation dependency of

the protocol market and restrict users from obtaining it multiple times in a short period of

time or take other steps to mitigate the problem.

33/46

ORA-2 Epoch Issues

Severity: Minor

Status: Fixed

Code Location:

nemo/sources/oracle.move

Descriptions:

The get_price function is called to check if the epoch in PriceVoucher is equal to the epoch

in the current ctx , but since PriceVoucher is a hot-potato type,

get_price_voucher_from_x_oracle and get_price must be executed in the same

transaction, so checking the epoch seem to work for nothing.

Suggestion:

It is recommended to ensure that this is as designed.

34/46

YFA-1 SyInterestPostExpiry Calculation Error

Severity: Critical

Status: Fixed

Code Location:

nemo/sources/py/yield_factory.move#369

Descriptions:

When calculating sy_interest_post_expiry , if expired=true , you need to subtract the user's

value after converting the asset to get the excess funds before sending them to

factory_config.treasury . The current judgment lacks the difference calculation, which leads

to an error when all conversions are sent to factory_config.treasury .

 letlet mut sy_interest_post_expiry mut sy_interest_post_expiry == fixed_point64 fixed_point64::::zerozero(());;
 ifif ((expiredexpired)) {{
 sy_interest_post_expiry sy_interest_post_expiry == sy sy::::asset_to_syasset_to_sy((
 pypy::::first_py_indexfirst_py_index((py_statepy_state)),,
 fixed_point64fixed_point64::::from_uint64from_uint64((amount_to_redeemamount_to_redeem))
));;
 }};;
 pypy::::transfer_sytransfer_sy((
 factory_configfactory_config..treasurytreasury,,
 py_statepy_state,,
 sy_interest_post_expirysy_interest_post_expiry,,
 ctxctx
));;

Suggestion:

It is recommended to modify the code to syInterestPostExpiry = sy_interest_post_expiry -

sy_amount_to_user .

35/46

YFA-2 Lack of Permission Validation for init_config()

Severity: Major

Status: Fixed

Code Location:

nemo/sources/py/yield_factory.move#86

Descriptions:

The method init_config() lacks proper permissions, which means anyone can call it and

brings potential risk.

Suggestion:

It is recommended to add permission to fix this issue.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

36/46

YFA-3 Inconsistency Between PyState and PyPosition

Severity: Major

Status: Fixed

Code Location:

nemo/sources/py/yield_factory.move#208

Descriptions:

The mint_py_internal() function does not verify the consistency between PyState and

PyPosition . If inconsistent objects are used, it may prevent users from properly burning the

sy .

Suggestion:

It is recommended to check the state_id is the same in the mint_py_internal() function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

37/46

YFA-4 Lack of Version Check

Severity: Medium

Status: Fixed

Code Location:

nemo/sources/py/yield_factory.move

Descriptions:

In the redeem_py_internal and redeem_due_interest function, version checking is missing.

This could allow operations between different versions to be compatible, potentially leading

to unknown security risks.

Suggestion:

It is recommended to add a version check for the function.

38/46

YFA-5 Expiration Time Boundary Value Check Error

Severity: Minor

Status: Fixed

Code Location:

nemo/sources/py/yield_factory.move#313;

nemo/sources/py/yield_factory.move#412

Descriptions:

The boundary value check of the expired status does not match. When the current time

reaches expiry , it is also included in the expiration time.

letlet expired expired == clock clock::::timestamp_mstimestamp_ms((clockclock)) >> py_position py_position..expiryexpiry(());;

Suggestion:

It is recommended to modify the check to clock::timestamp_ms(clock) >=

py_position.expiry(); .

39/46

MAR1-1 LP Slippage Check Issues

Severity: Major

Status: Fixed

Code Location:

nemo/vendor/protocol/sources/market/market.move#136-184

Descriptions:

In the function seed_liquidity , when checking the LP slippage issue, the comparison should

be based on market_position.lp_amount > min_lp_amount instead of using

market.lp_supply . Additionally, this method might fail under certain conditions. If it is

intended to be used only for the first addition of liquidity, a restriction such as

market.lp_supply == 0 should be enforced.

In the mint_lp method, the validation for min_lp_amount should ensure that

market_position.lp_amount >= min_lp_amount .

Suggestion:

It's recommended to use market_position.lp_amount > min_lp_amount instead of

market.lp_supply for slippage checks in seed_liquidity . Additionally, enforce

market.lp_supply == 0 for initial liquidity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

40/46

MAR1-2 add_liquidity_single_sy Lack of Market CAP checks

Severity: Medium

Status: Fixed

Code Location:

nemo/vendor/protocol/sources/market/market.move#811

Descriptions:

The function add_liquidity_single_sy lacks a check for Market CAP, leading to the possibility

of adding liquidity in excess of CAP via the add_liquidity_single_sy function.

Suggestion:

When adding liquidity, it is recommended to judge whether the cap exceeds the market Cap.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

41/46

MAR1-3 Code Optimization

Severity: Minor

Status: Acknowledged

Code Location:

nemo/vendor/protocol/sources/market/market.move#136,184

Descriptions:

seedLiquidity and mint_lp methods, can move the judgment condition assert!

(market.market_cap == 0 || balance::value(&market.total_sy) <= market.market_cap,

error::market_cap_exceeded()); to the mint_lp_internal function.

Suggestion:

It is recommended to optimize the code.

42/46

MAR1-4 get_market_state Does Not Determine Whether The
Market Is Empty

Severity: Informational

Status: Acknowledged

Code Location:

nemo/vendor/protocol/sources/market/market.move#1115

Descriptions:

get_market_state does not determine market.total_pt > 0 total_asset > 0 the return value

of get_market_state may have caused unexpected consequences.

Suggestion:

It is recommended that function get_market_state determine if market.total_pt,

total_asset is zero.

43/46

MAR1-5 reward_rate Field Design Issues

Severity: Informational

Status: Acknowledged

Code Location:

nemo/vendor/protocol/sources/market/market.move

Descriptions:

The reward_rate field exists in the YieldFactoryConfig object but is not used anywhere

else, make sure this is compliant with the protocol design. Also, the interest rate model in

the protocol uses something like (cash + debt - revenue)/market_coin_supply , which in the

early stages of the market if there is a reward, could cause inflation due to the

exchange_rate calculation being attacked by the first minting (similar to the compound first

minting bug).

Suggestion:

It is recommended to ensure that the reward_rate is as designed for the protocol.

Resolution:

The client has deleted this variable.

44/46

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

45/46

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

46/46

	593_page1.pdf
	593_page2.pdf

