
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

LayerBank

Wed Jan 22 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

LayerBank Audit Report

1 Executive Summary

1.1 Project Information

Description A universal permissionless on-chain bank

Type DeFi

Auditors MoveBit

Timeline Mon Nov 11 2024 - Wed Jan 22 2025

Languages Move

Platform Movement

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/layerbank/aptos-contracts

Commits fe7748f197b9c9d6bd77540bbd409980b0889dd4
193f55cb6327d7215462c725a91ba38b2d287e0c
46c8ee737ba8e96707d043fe9edb792000d91538

1/42

https://github.com/layerbank/aptos-contracts
https://github.com/layerbank/aptos-contracts/tree/fe7748f197b9c9d6bd77540bbd409980b0889dd4
https://github.com/layerbank/aptos-contracts/tree/193f55cb6327d7215462c725a91ba38b2d287e0c
https://github.com/layerbank/aptos-contracts/tree/46c8ee737ba8e96707d043fe9edb792000d91538

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV1 aave-core/aave-config/Move.toml eb5ec6b482f1a36d99ebed5b1de0
21f655243d08

HEL aave-core/aave-config/sources/hel
per.move

e577bd18d945c8fdd0d75cde25db
e6043b28d032

STO aave-core/sources/aave-tokens/sta
ndard_token.move

eb0ae06e1d5a8847ca98b0dab732
ad212dc4a1e7

CWR aave-core/sources/aave-periphery/
coin_wrapper.move

3090c43e7523c8cb0345640ea757
340a9d35bfe6

STR aave-core/sources/aave-periphery/
stream.move

2d91c37fdbc7b4e9ae620e165c855
879133dfc86

MOV1 aave-core/aave-oracle/Move.toml 0ef4122f9fe86e4d3afef05741e446
a9bd2f7e4e

ORA aave-core/aave-oracle/sources/ora
cle.move

a637ef6aaac33c088a8721560c906
9779c18c216

RCO aave-core/aave-config/sources/res
erve_config.move

d39ead6ae5249c8f32efd5cd266e5
d8cd0dec0bf

UCO aave-core/aave-config/sources/use
r_config.move

67a6e7eebcb401a1d7a3aee57175
dd6510178679

ECO aave-core/aave-config/sources/err
or_config.move

ebd324765a4982d59880bce2dea7
8d70d7a7caa2

MOV5 aave-core/aave-math/Move.toml 2466400930ebcf00df0e950c4068f4
6730f6c5ec

2/42

MUT aave-core/aave-math/sources/mat
h_utils.move

f402f4243f3aeb0f8fc302b0196b2e
c9a976e277

WRM aave-core/aave-math/sources/wad
_ray_math.move

f36dd5a86d48dc9273f9ec21b91b9
f2f116bdf14

MOV6 aave-core/aave-large-packages/Mo
ve.toml

153cc0ecf47c73c36cba4c8242344
e47fd0f17d9

LPA aave-core/aave-large-packages/sou
rces/large_packages.move

0d181b21707f2ee7384fccf9392323
37985e820c

MOV8 aave-core/aave-acl/Move.toml ed2bdbd23d44ac5e995e6fb73bc6
8fbfb9f2ab68

AMA aave-core/aave-acl/sources/acl_ma
nage.move

5ad5173408dba8336bad91395e3e
7cdbecda9abc

ATF aave-core/sources/aave-tokens/a_t
oken_factory.move

32083cbe870ab7142b8ce0210930
851f07ca81ff

TBA aave-core/sources/aave-tokens/tok
en_base.move

366b747b91178c973931e3926956
0c4ddd760182

FAM aave-core/sources/aave-tokens/fun
gible_asset_manager.move

3167b679c247b02a8a33fbc271db
5769e963be6b

VDTF aave-core/sources/aave-tokens/var
iable_debt_token_factory.move

87bec05f324ecc35324c4e9acf86a4
d13a2b1380

SLO aave-core/sources/aave-logic/suppl
y_logic.move

3a775a4b1f9289048cec61e925e4c
d5f71e00e0e

FLO aave-core/sources/aave-logic/flashl
oan_logic.move

bb3432b8bb78bfd56a318993d960
bf3dbb8466d3

GLO aave-core/sources/aave-logic/gene
ric_logic.move

5a43b6e97dc7c7871d2a738246f11
54f7227a765

3/42

BLO aave-core/sources/aave-logic/bridg
e_logic.move

3fcaa0ffcbdf0898ddf36e2ed6cada
80436da0d4

LLO aave-core/sources/aave-logic/liquid
ation_logic.move

6fb3cd5ab41cc64867cc4265e34d3
a6129d90f6f

VLO aave-core/sources/aave-logic/valid
ation_logic.move

60f7c4eae61ec8fe46a035c813394
7fbedfd8780

ULO aave-core/sources/aave-logic/user_
logic.move

0dde64c2628b5ff2070774a4c5ed1
42df0ca45f1

BLO1 aave-core/sources/aave-logic/borr
ow_logic.move

3c560945a4de89b4a1cc01f68b312
6c65c0228ca

ELO aave-core/sources/aave-logic/emo
de_logic.move

ca015f4061cdc7871e167f1f6eafb8f
1d1a9fad8

IML aave-core/sources/aave-logic/isolat
ion_mode_logic.move

75eb13f99c7246588da86706e729f
f8b142b4361

PDP aave-core/sources/aave-pool/pool_
data_provider.move

f88134b68c030e4666fec08898293
2bcff6c66b6

PCO aave-core/sources/aave-pool/pool_
configurator.move

5d36e3b8c134c6a5c4fd57a106db
a2dd6a2b87ac

POO aave-core/sources/aave-pool/pool.
move

f74ef4405aa71b04dc7686ee6d13b
f7e6057bbc8

STO2 aave-core/sources/aave-periphery/
staked_token.move

b061a80e9c30819b22b5cc1e1c44
b21d7cf9d3da

EMA aave-core/sources/aave-periphery/
emission_manager.move

3a5f8be65d99fd341a0fe08480bb8
bc19a42c6fa

UPDPV3 aave-core/sources/aave-periphery/
ui_pool_data_provider_v3.move

2ec929f8d75f6fc277476947b1c508
6cb64d7745

4/42

EAP aave-core/sources/aave-periphery/
eac_aggregator_proxy.move

670d11097c35b8244be7db1763d9
f250c517240e

COL aave-core/sources/aave-periphery/
collector.move

75aea06f548615f9ac44aa098028a
117a24d7f02

UIDPV3 aave-core/sources/aave-periphery/
ui_incentive_data_provider_v3.mov
e

50ff59afd7fc5492dbe4603a1f915b
fa68b13eab

PMA aave-core/sources/aave-periphery/
package-manager.move

4aef563a07e5d4e6750ff23893515
7cfa5de1e02

ACER aave-core/sources/aave-periphery/
admin_controlled_ecosystem_reser
ve.move

e126bdb3c546c091f660547e2f2e7
5b052ac44bc

RCO1 aave-core/sources/aave-periphery/
rewards_controller.move

3c409e9bd4714bc156ebd3f99105
eafb03364c31

ERV2 aave-core/sources/aave-periphery/
ecosystem_reserve_v2.move

7f318a80f285a3930cebf49e03aee7
0cd7f0164e

CMI aave-core/sources/aave-periphery/
coin_migrator.move

6ce3f30f34415c6bc2fe10a5002f27
bf5e0b33f7

TST aave-core/sources/aave-periphery/
transfer_strategy.move

c2cac0eefbd27e4b6e97300cc2924
6bfddba9c07

5/42

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 19 19 0

Informational 1 1 0

Minor 6 6 0

Medium 3 3 0

Major 5 5 0

Critical 4 4 0

6/42

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

7/42

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

8/42

2 Summary

This report has been commissioned by LayerBank to identify any potential issues and
vulnerabilities in the source code of the LayerBank smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 19 issues of varying severity, listed below.

ID Title Severity Status

COL-1 Lack of Explicit Error Handling in
withdraw Function

Minor Fixed

ERV-1 Incorrect Implementation of
withdraw_from_stream

Critical Fixed

ERV-2 Incorrect Permission Verification
Logic in is_recipient Function

Minor Fixed

FLO-1 Mock Contracts Should Not Be
Used

Minor Fixed

GLO-1 The Token Price Used during
Liquidation is not Up-to-date

Medium Fixed

MUT-1 Optimize pow Function with Fast
Exponent

Minor Fixed

ORA-1 The Price Validity Period is Too
Long

Critical Fixed

ORA-2 Different Tokens Should Have
Different Validity Periods

Major Fixed

ORA-3 The Price Calculation is Incorrect Major Fixed

9/42

ORA-4 aave_oracle Lacks Support for
Asset Removal

Minor Fixed

ORA-5 Unnecessary use of
borrow_global_mut

Informational Fixed

POO-1 The Calculation of
total_debt_accrued is Incorrect

Major Fixed

POO-2 There is an extra Comma in the
Parameters when Calculating
curr_total_variable_debt

Minor Fixed

RCO-1 Logical Error in Branch Conditions
of claim_rewards_internal
Function

Critical Fixed

SLO-1 Incorrect Borrowing Status Update
After Full Repayment

Major Fixed

TBA-1 transfer Transfers an Incorrect
Amount

Critical Fixed

TBA-2 The implementation of
token_base is incorrect

Major Fixed

TBA-3 The set_frozen_flag() Function Call
is Missing in the transfer()
Function

Medium Fixed

TBA-4 Evading Debt Medium Fixed

10/42

3 Participant Process

Here are the relevant actors with their respective abilities within the LayerBank Smart
Contract :
Owner

The owner can initialize interest rate strategy through init_interest_rate_strategy()

The owner can set the reserve interest rate strategy through

set_reserve_interest_rate_strategy()

The owner can initialize reserves through init_reserves()

The owner can drop a reserve through drop_reserve()

The owner can enable or disable borrowing on a reserve through

set_reserve_borrowing()

The owner can configure a reserve as collateral through

configure_reserve_as_collateral()

The owner can enable or disable flash loan on a reserve through

set_reserve_flash_loaning()

The owner can activate or deactivate a reserve through set_reserve_active()

The owner can freeze or unfreeze a reserve through set_reserve_freeze()

The owner can set a reserve as borrowable in isolation through

set_borrowable_in_isolation()

The owner can pause or unpause a reserve through set_reserve_pause()

The owner can change the reserve factor of a reserve through set_reserve_factor()

The owner can set a debt ceiling on a reserve through set_debt_ceiling()

The owner can set siloed borrowing state on a reserve through set_siloed_borrowing()

The owner can set a borrow cap on a reserve through set_borrow_cap()

The owner can set a supply cap on a reserve through set_supply_cap()

The owner can set a liquidation protocol fee on a reserve through

set_liquidation_protocol_fee()

11/42

The owner can set an e-mode category configuration through set_emode_category()

The owner can set an asset's e-mode category through set_asset_emode_category()

The owner can set an unbacked mint cap on a reserve through

set_unbacked_mint_cap()

The owner can pause the entire pool through set_pool_pause()

The owner can update the bridge protocol fee through update_bridge_protocol_fee()

The owner can update the total premium for a flashloan through

update_flashloan_premium_total()

The owner can update the protocol's share of the flashloan premium through

update_flashloan_premium_to_protocol()

The owner can configure multiple reserves in one function call through

configure_reserves()

The owner can initialize the pool through init_pool()

The owner can initialize a reserve through init_reserve()

The owner can drop a reserve through drop_reserve()

The owner can set the accrued treasury amount for a reserve through

set_reserve_accrued_to_treasury()

The owner can update reserve interest rates through update_interest_rates()

The owner can set the unbacked value for a particular reserve through

set_reserve_unbacked()

The owner can set the isolation mode total debt for a particular reserve through

set_reserve_isolation_mode_total_debt()

The owner can set the reserve's configuration through set_reserve_configuration()

The owner can set the bridge protocol fee through set_bridge_protocol_fee()

The owner can set the flash loan premiums through set_flashloan_premiums()

The owner can mint to the treasury for specified asset addresses through

mint_to_treasury()

12/42

The owner can cumulate additional amounts to the liquidity index of a given reserve

through cumulate_to_liquidity_index()

The owner can reset the total isolation mode debt to zero for a given reserve through

reset_isolation_mode_total_debt()

The owner can transfer tokens for rescue or redistribution purposes through

rescue_tokens()

The owner can set user configurations through set_user_configuration()

The owner can issue a token cap through issue_cap()

User

The user can set user-specific Enhanced Mode (EMode) settings through

set_user_emode()

The user can check if two EModes are the same through is_in_emode_category()

The user can get the price source address for a specific EMode category through

get_emode_e_mode_price_source()

The user can retrieve EMode configuration details such as Loan-To-Value (LTV),

liquidation threshold, and asset price through get_emode_configuration()

The user can get the label of a specific EMode category through

get_emode_e_mode_label()

The user can get the liquidation bonus for a specific EMode category through

get_emode_e_mode_liquidation_bonus()

The user can calculate their account data related to collateral, debt, LTV, and health

factor through calculate_user_account_data()

The user can calculate how much they can still borrow based on their total collateral,

existing debt, and LTV through calculate_available_borrows()

The user can validate health factor and loan-to-value through validate_hf_and_ltv()

The user can check automatic collateral usability validation through

validate_automatic_use_as_collateral()

The user can validate use as collateral through validate_use_as_collateral()

The user can validate health factor through validate_health_factor()

13/42

The user can validate setting of user economic mode through

validate_set_user_emode()

The user can borrow assets through borrow()

The user can repay borrowed assets through repay()

The user can repay with A-tokens through repay_with_a_tokens()

The user can liquidate a debt through liquidation_call()

The user can supply assets to the pool through supply()

The user can withdraw assets from the pool through withdraw()

The user can finalize asset transfers between users within the pool through

finalize_transfer()

The user can set whether a reserve should be used as collateral by a user through

set_user_use_reserve_as_collateral()

The user can deposit assets to the pool on behalf of another user through deposit()

The user can initiate a complex flash loan through flashloan()

The user can initiate a simple flash loan through flash_loan_simple()

The user can repay a complex flash loan through pay_flash_loan_complex()

The user can repay a simple flash loan through pay_flash_loan_simple()

14/42

4 Findings

COL-1 Lack of Explicit Error Handling in withdraw Function

Severity: Minor

Status: Fixed

Code Location:

aave-core/sources/aave-periphery/collector.move#132

Descriptions:

 publicpublic fun fun withdrawwithdraw((
 sendersender:: &&signersigner,,
 asset_metadataasset_metadata:: ObjectObject<<MetadataMetadata>>,,
 receiverreceiver:: address address,,
 amountamount:: u64 u64
)) acquires acquires CollectorDataCollectorData {{
 // check sender is the fund admin// check sender is the fund admin
 is_funds_adminis_funds_admin((signersigner::::address_ofaddress_of((sendersender))));;

 // borrow the global collector data// borrow the global collector data
 letlet collector_data collector_data == borrow_global_mut borrow_global_mut<<CollectorDataCollectorData>>((collector_addresscollector_address(())));;

 // check if we have a secondary fungible store for the asset, if now, throw an error// check if we have a secondary fungible store for the asset, if now, throw an error
 ifif ((smart_tablesmart_table::::containscontains((&&collector_datacollector_data..fungible_assetsfungible_assets,, asset_metadata asset_metadata)))) {{
 letlet collector_fungible_store collector_fungible_store ==
 smart_tablesmart_table::::borrowborrow((&&collector_datacollector_data..fungible_assetsfungible_assets,, asset_metadata asset_metadata));;
 letlet collector_fungible_store_signer collector_fungible_store_signer ==
 objectobject::::generate_signer_for_extendinggenerate_signer_for_extending((&&collector_datacollector_data..extend_refextend_ref));;
 letlet receiver_fungible_store receiver_fungible_store ==
 primary_fungible_storeprimary_fungible_store::::ensure_primary_store_existsensure_primary_store_exists((
 receiverreceiver,, asset_metadata asset_metadata
));;

 // transfer the amount from the collector's sec store to the receiver's store using// transfer the amount from the collector's sec store to the receiver's store using
the collectors signer which is also the owner of the sec.storethe collectors signer which is also the owner of the sec.store
 fungible_assetfungible_asset::::transfertransfer((
 &&collector_fungible_store_signercollector_fungible_store_signer,,
 **collector_fungible_storecollector_fungible_store,,

15/42

 receiver_fungible_storereceiver_fungible_store,,
 amountamount
));;
 }}
 }}

In the withdraw function of aave_pool::collector , the condition

smart_table::contains(&collector_data.fungible_assets, asset_metadata) is checked to

validate whether the asset metadata exists. However, if this condition is not satisfied, there

is no explicit error handling or meaningful response to address the failed check.

Suggestion:

Implement explicit error handling to address cases where the condition

smart_table::contains(&collector_data.fungible_assets, asset_metadata) is not satisfied.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/42

ERV-1 Incorrect Implementation of withdraw_from_stream

Severity: Critical

Status: Fixed

Code Location:

aave-core/sources/aave-periphery/ecosystem_reserve_v2.move#270

Descriptions:

The withdraw_from_stream function contains several critical issues:

1. Visibility Scope:

The function should be declared as public . If it remains private, it cannot be called

externally, defeating its intended purpose. The create_stream function should also be

public.

2. Missing Funds Transfer:

The function does not include the essential operation of transferring funds to the

recipient . This omission makes the implementation incomplete and non-functional

for its intended use.

Suggestion:

1. Change Visibility to Public:

Update the function's visibility to ensure it is accessible when needed.

2. Implement Funds Transfer:

Add logic to transfer the specified amount from the contract to the recipient . This

step is critical for meeting the function’s requirements.

3. Reference for Implementation:

Review the implementation in Aave's AaveEcosystemReserveV2.sol for guidance.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/42

https://github.com/aave/aave-v3-periphery/blob/803c3e7d6d1c6da8d91411f4d085494f7189ea0b/contracts/treasury/AaveEcosystemReserveV2.sol#L254

ERV-2 Incorrect Permission Verification Logic in is_recipient
Function

Severity: Minor

Status: Fixed

Code Location:

aave-core/sources/aave-periphery/ecosystem_reserve_v2.move#84

Descriptions:

 fun fun is_recipientis_recipient((accountaccount:: address address,, stream_idstream_id:: u256 u256)):: bool acquires bool acquires
EcosystemReserveV2DataEcosystemReserveV2Data {{
 letlet ecosystem_reserve_v2_data ecosystem_reserve_v2_data ==
 borrow_globalborrow_global<<EcosystemReserveV2DataEcosystemReserveV2Data>>
((ecosystem_reserve_v2_data_addressecosystem_reserve_v2_data_address(())));;

 ifif ((!!smart_tablesmart_table::::containscontains((&&ecosystem_reserve_v2_dataecosystem_reserve_v2_data..streamsstreams,, stream_id stream_id)))) {{
 returnreturn falsefalse
 }};;
 letlet stream_item stream_item ==
 smart_tablesmart_table::::borrowborrow((&&ecosystem_reserve_v2_dataecosystem_reserve_v2_data..streamsstreams,, stream_id stream_id));;
 letlet recipient recipient == stream stream::::recipientrecipient((stream_itemstream_item));;

 recipient recipient !=!= account account
 }}

the function contains a logical error in its return condition:

recipient recipient !=!= account account

This condition incorrectly returns false when the account matches the recipient, and true

otherwise.

Suggestion:

Correct the return condition in the is_recipient function to ensure accurate permission

verification:

recipient recipient ==== account account

18/42

Resolution:

This issue has been fixed. The client has adopted our suggestions.

Since the current function is not utilized in the present repository, the severity is categorized

as minor.

19/42

FLO-1 Mock Contracts Should Not Be Used

Severity: Minor

Status: Fixed

Code Location:

aave-core/sources/aave-flash-loan/flash_loan.move#525

Descriptions:

Frequent use of mock contracts in smart contract development can introduce security risks,

inconsistencies, maintainability issues, performance problems, and insufficient test

coverage.

 mock_underlying_token_factorymock_underlying_token_factory::::transfer_fromtransfer_from((
 repayment_paramsrepayment_params..receiver_addressreceiver_address,,
 a_token_account_addressa_token_account_address,,
 ((amount_plus_premium amount_plus_premium asas u64 u64)),,
 repayment_paramsrepayment_params..assetasset,,
));;

Suggestion:

It is recommended that mock contracts are not used.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/42

GLO-1 The Token Price Used during Liquidation is not Up-to-
date

Severity: Medium

Status: Fixed

Code Location:

aave-core/sources/aave-pool/generic_logic.move#122-127

Descriptions:

In the calculate_user_account_data() function, the protocol calls oracle::get_asset_price() to

obtain the asset_price , which is then used to calculate user_balance_in_base_currency and

user_debt_in_base_currency .

 varsvars..asset_priceasset_price == ifif ((varsvars..emode_asset_priceemode_asset_price !=!= 00 &&&& user_emode_category user_emode_category ====
((varsvars..emode_asset_categoryemode_asset_category asas u8 u8)))) {{
 varsvars..emode_asset_priceemode_asset_price
 }} elseelse {{
 oracleoracle::::get_asset_priceget_asset_price((varsvars..current_reserve_addresscurrent_reserve_address))
 }};;

However, in the get_asset_price() function, the protocol directly calls get_pyth_price() to

retrieve the price.

 publicpublic fun fun get_asset_priceget_asset_price((assetasset:: address address)):: u256 acquires u256 acquires PythAssetPriceListPythAssetPriceList {{
 letlet asset_price_list asset_price_list == borrow_global borrow_global<<PythAssetPriceListPythAssetPriceList>>((@echo_oracle@echo_oracle));;
 ifif ((!!simple_mapsimple_map::::contains_keycontains_key((&&asset_price_listasset_price_list..valuevalue,, &&assetasset)))) {{
 returnreturn 00
 }};;
 get_pyth_priceget_pyth_price((simple_mapsimple_map::::borrowborrow((&&asset_price_listasset_price_list..valuevalue,, &&assetasset))))
 }}

The issue here is that the protocol does not update the Pyth oracle's price before retrieving

it, so there is a possibility of returning an outdated price.

While the protocol has a function, set_asset_price() , to update the price, this function can

only be called by the admin.

21/42

 publicpublic entry fun entry fun set_asset_priceset_asset_price((
 accountaccount:: &&signersigner,, assetasset:: address address,, pyth_price_updatepyth_price_update:: vector vector<<vectorvector<<u8u8>>>>
)) acquires acquires PythAssetPriceListPythAssetPriceList {{
 // ensure only admins can call this method// ensure only admins can call this method
 check_is_asset_listing_or_pool_admincheck_is_asset_listing_or_pool_admin((signersigner::::address_ofaddress_of((accountaccount))));;
 letlet asset_price_list asset_price_list == borrow_global_mut borrow_global_mut<<PythAssetPriceListPythAssetPriceList>>((@echo_oracle@echo_oracle));;
 assertassert!!((simple_mapsimple_map::::contains_keycontains_key((&&asset_price_listasset_price_list..valuevalue,, &&assetasset)),,
E_ASSET_NOT_EXISTSE_ASSET_NOT_EXISTS));;

In the EVM ecosystem, such as in Aave V3, we observed that the protocol calls Chainlink's

latestAnswer() to get the most recent price.

 functionfunction getAssetPricegetAssetPrice((address assetaddress asset)) publicpublic view override view override returnsreturns ((uint256uint256)) {{
 AggregatorInterfaceAggregatorInterface source source == assetsSources assetsSources[[assetasset]];;

 ifif ((asset asset ==== BASE_CURRENCYBASE_CURRENCY)) {{
 returnreturn BASE_CURRENCY_UNITBASE_CURRENCY_UNIT;;
 }} elseelse ifif ((addressaddress((sourcesource)) ==== addressaddress((00)))) {{
 returnreturn _fallbackOracle _fallbackOracle..getAssetPricegetAssetPrice((assetasset));;
 }} elseelse {{
 int256 price int256 price == source source..latestAnswerlatestAnswer(());;
 ifif ((price price >> 00)) {{
 returnreturn uint256uint256((priceprice));;
 }} elseelse {{
 returnreturn _fallbackOracle _fallbackOracle..getAssetPricegetAssetPrice((assetasset));;
 }}
 }}
 }}

To resolve this, we recommend calling pyth.get_price_no_older_than() to ensure the latest

price is used, or updating the price before using it.

Suggestion:

It is recommended to call pyth.get_price_no_older_than() to ensure the latest price is used,

or updating the price before using it.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/42

MUT-1 Optimize pow Function with Fast Exponent

Severity: Minor

Status: Fixed

Code Location:

aave-core/aave-math/sources/math_utils.move#134-140

Descriptions:

 publicpublic fun fun powpow((basebase:: u256 u256,, exponentexponent:: u256 u256)):: u256 u256 {{
 letlet result result == 11;;
 forfor ((_i _i inin 0.0...exponentexponent)) {{
 result result == result result ** base base;;
 }};;
 resultresult
 }}

The current pow function uses a loop with O(n) complexity to compute the power by

iterating exponent times. This linear approach results in high gas costs for large exponents

due to the repeated multiplications.

Suggestion:

Refactor the pow function to use fast exponentiation (exponentiation by squaring), which

reduces the time complexity from O(n) to O(logn).

This optimization will decrease the number of operations required, effectively reducing gas

consumption and making the function more efficient for larger exponents.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/42

https://github.com/aptos-labs/aptos-core/blob/23db58426bcf266dd8042f53104fb742824d0700/aptos-move/framework/aptos-stdlib/sources/math128.move#L64-L78

ORA-1 The Price Validity Period is Too Long

Severity: Critical

Status: Fixed

Code Location:

aave-core/aave-oracle/sources/oracle.move#34

Descriptions:

The contract uses the Pyth Oracle, but the price validity period is set too long. For example,

with highly volatile token prices, this provides attackers with significant arbitrage

opportunities.

Current setting:

constconst PYTH_MAX_SECONDS_OLDPYTH_MAX_SECONDS_OLD:: u64 u64 == 72007200;;

Suggestion:

Reduce the price validity period.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

24/42

ORA-2 Different Tokens Should Have Different Validity Periods

Severity: Major

Status: Fixed

Code Location:

aave-core/aave-oracle/sources/oracle.move#34

Descriptions:

Currently, the contract applies the same validity period to all tokens. However, different

tokens have varying levels of price volatility. For tokens with higher volatility, the validity

period should be shorter, while for tokens with lower volatility, a longer validity period is

acceptable. This approach helps ensure more accurate and timely price data.

Current Setting:

constconst PYTH_MAX_SECONDS_OLDPYTH_MAX_SECONDS_OLD:: u64u64 == 72007200;;

Suggestion:

Use Different Validity Periods for Different Tokens Based on Their Volatility.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

25/42

ORA-3 The Price Calculation is Incorrect

Severity: Major

Status: Fixed

Code Location:

aave-core/aave-oracle/sources/oracle.move#217-234

Descriptions:

In the oracle.get_price() function, the protocol first retrieves price_positive , then

expo_magnitude , and finally returns price_positive * pow(10, expo_magnitude) . This is

incorrect.

// construct the price// construct the price
 letlet price_positive price_positive ==
 ifif ((i64i64::::get_is_negativeget_is_negative((&&priceprice::::get_priceget_price((&&priceprice)))))) {{
 i64i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&priceprice::::get_priceget_price((&&priceprice))))
 }} elseelse {{
 i64i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&priceprice::::get_priceget_price((&&priceprice))))
 }};;
 letlet expo_magnitude expo_magnitude ==
 ifif ((i64i64::::get_is_negativeget_is_negative((&&priceprice::::get_expoget_expo((&&priceprice)))))) {{
 i64i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&priceprice::::get_expoget_expo((&&priceprice))))
 }} elseelse {{
 i64i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&priceprice::::get_expoget_expo((&&priceprice))))
 }};;
 ((price_positive price_positive ** powpow((1010,, expo_magnitude expo_magnitude)),,
 priceprice::::get_confget_conf((&&priceprice)),,
 priceprice::::get_timestampget_timestamp((&&priceprice))))

On the Aptos chain, price::get_expo(&price) is generally negative.

https://pyth.network/price-feeds/crypto-apt-usd

If it's negative, the final price should be price = price_positive / pow(10, expo_magnitude) . If

it's positive, multiplication should be used.

Suggestion:

It is recommended to account for scenarios where the expo value is either positive or

negative.

26/42

https://pyth.network/price-feeds/crypto-apt-usd

Resolution:

This issue has been fixed, and the client has correctly calculated the price.

27/42

ORA-4 aave_oracle Lacks Support for Asset Removal

Severity: Minor

Status: Fixed

Code Location:

aave-core/aave-oracle/sources/oracle.move#147

Descriptions:

The aave_oracle::add_asset module currently provides the capability to add new assets to

the oracle but does not support the removal of assets. This absence of functionality could

result in difficulties when managing scenarios where an asset needs to be deprecated or

removed from the supported list.

Suggestion:

Introduce a remove_asset function . This would enhance the flexibility and robustness of

the oracle by allowing dynamic updates to the list of supported assets.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

28/42

ORA-5 Unnecessary use of borrow_global_mut

Severity: Informational

Status: Fixed

Code Location:

aave-core/aave-oracle/sources/oracle.move#137,208;

aave-core/sources/aave-pool/pool.move#875

Descriptions:

fun fun get_oracle_base_currencyget_oracle_base_currency(()):: OptionOption<<BaseCurrencyBaseCurrency>> acquires acquires OracleDataOracleData {{
 // get the oracle data// get the oracle data
 letlet oracle_data oracle_data == borrow_global_mut borrow_global_mut<<OracleDataOracleData>>((@aave_oracle@aave_oracle));;
}}

 fun fun get_asset_identifierget_asset_identifier((assetasset:: StringString)):: OptionOption<<vectorvector<<u8u8>>>> acquires acquires OracleDataOracleData {{
 // check the asset is not the base currency// check the asset is not the base currency
 letlet oracle_data oracle_data == borrow_global_mut borrow_global_mut<<OracleDataOracleData>>((@aave_oracle@aave_oracle));;
}}

!!smart_tablesmart_table::::containscontains((&&mut reserve_address_listmut reserve_address_list..valuevalue,, index index))

In cases where borrow_global_mut is used without any actual data modification, it can

create confusion by implying intent to alter data, leading to reduced code clarity and

unnecessary mutable borrowing.

Suggestion:

Replace borrow_global_mut with borrow_global in such scenarios to enhance readability

and avoid unnecessary mutable borrowing.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

29/42

POO-1 The Calculation of total_debt_accrued is Incorrect

Severity: Major

Status: Fixed

Code Location:

aave-core/sources/aave-pool/pool.move#804-816

Descriptions:

In the accrue_to_treasury() function, the protocol first calculates prev_total_variable_debt ,

then curr_total_variable_debt , and afterwards calculates total_debt_accrued =

curr_total_variable_debt - prev_total_variable_debt .

 letlet prev_total_variable_debt prev_total_variable_debt ==
 wad_ray_mathwad_ray_math::::ray_mulray_mul((curr_scaled_variable_debtcurr_scaled_variable_debt,,
((reserve_datareserve_data..variable_borrow_indexvariable_borrow_index asas u256 u256))));;

 letlet curr_total_variable_debt curr_total_variable_debt ==
 wad_ray_mathwad_ray_math::::ray_mulray_mul((curr_scaled_variable_debtcurr_scaled_variable_debt,,
((reserve_datareserve_data..variable_borrow_indexvariable_borrow_index asas u256 u256)),,));;

 letlet total_debt_accrued total_debt_accrued == curr_total_variable_debt curr_total_variable_debt -- prev_total_variable_debt prev_total_variable_debt;;

We found that when calculating both prev_total_variable_debt and

curr_total_variable_debt , the protocol uses curr_scaled_variable_debt *

reserve_data.variable_borrow_index for both. This causes total_debt_accrued to always be

zero. https://github.com/aave/aave-v3-

core/blob/master/contracts/protocol/libraries/logic/ReserveLogic.sol#L243-L250

Suggestion:

It is recommended to use the next variableBorrowIndex to calculate the current total debt.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

30/42

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ReserveLogic.sol#L243-L250
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/logic/ReserveLogic.sol#L243-L250

POO-2 There is an extra Comma in the Parameters when
Calculating curr_total_variable_debt

Severity: Minor

Status: Fixed

Code Location:

aave-core/sources/aave-pool/pool.move#810-814

Descriptions:

In the accrue_to_treasury() function, the protocol calculates curr_total_variable_debt in

this way.

 letlet curr_total_variable_debt curr_total_variable_debt ==
 wad_ray_mathwad_ray_math::::ray_mulray_mul((curr_scaled_variable_debtcurr_scaled_variable_debt,,
((reserve_datareserve_data..variable_borrow_indexvariable_borrow_index asas u256 u256)),,));;

We found that there is an extra comma in the parameters of wad_ray_math::ray_mul() .

Suggestion:

It is recommended to remove this comma.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

31/42

RCO-1 Logical Error in Branch Conditions of
claim_rewards_internal Function

Severity: Critical

Status: Fixed

Code Location:

aave-core/sources/aave-periphery/rewards_controller.move#537-539

Descriptions:

In the claim_rewards_internal function of aave_pool::rewards_controller , the branch

conditions for two mutually exclusive actions are identical. Specifically:

 ifif ((smart_tablesmart_table::::containscontains((
 &&rewards_controller_datarewards_controller_data..pull_rewards_transfer_strategy_tablepull_rewards_transfer_strategy_table,, reward reward
)))) {{
 transfer_pull_rewards_transfer_strategy_rewardstransfer_pull_rewards_transfer_strategy_rewards((
 callercaller,,
 toto,,
 rewardreward,,
 total_rewardstotal_rewards,,
 rewards_controller_datarewards_controller_data
))
 }} elseelse ifif ((smart_tablesmart_table::::containscontains((
 &&rewards_controller_datarewards_controller_data..pull_rewards_transfer_strategy_tablepull_rewards_transfer_strategy_table,, reward reward
)))) {{
 transfer_staked_token_transfer_strategy_rewardstransfer_staked_token_transfer_strategy_rewards((
 callercaller,,
 toto,,
 rewardreward,,
 total_rewardstotal_rewards,,
 rewards_controller_datarewards_controller_data
))
 }};;

This causes the second branch to never execute, as the condition for the first branch will

always match when the second would.

The same issue also exists in the claim_all_rewards_internal function.

32/42

ifif ((smart_tablesmart_table::::containscontains((
 &&rewards_controller_datarewards_controller_data..pull_rewards_transfer_strategy_tablepull_rewards_transfer_strategy_table,,
 **vectorvector::::borrowborrow((&&rewards_listrewards_list,, i i))
)))) {{
 transfer_pull_rewards_transfer_strategy_rewardstransfer_pull_rewards_transfer_strategy_rewards((
 callercaller,,
 toto,,
 **vectorvector::::borrowborrow((&&rewards_listrewards_list,, i i)),,
 **vectorvector::::borrowborrow((&&claimed_amountsclaimed_amounts,, i i)),,
 rewards_controller_datarewards_controller_data
))
 }} elseelse ifif ((smart_tablesmart_table::::containscontains((
 &&rewards_controller_datarewards_controller_data..pull_rewards_transfer_strategy_tablepull_rewards_transfer_strategy_table,,
 **vectorvector::::borrowborrow((&&rewards_listrewards_list,, i i))
)))) {{
 transfer_staked_token_transfer_strategy_rewardstransfer_staked_token_transfer_strategy_rewards((
 callercaller,,
 toto,,
 **vectorvector::::borrowborrow((&&rewards_listrewards_list,, i i)),,
 **vectorvector::::borrowborrow((&&claimed_amountsclaimed_amounts,, i i)),,
 rewards_controller_datarewards_controller_data
))
 }};;

Suggestion:

Adjust the conditional logic to ensure each branch corresponds to a distinct scenario.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

33/42

SLO-1 Incorrect Borrowing Status Update After Full
Repayment

Severity: Major

Status: Fixed

Code Location:

aave-core/sources/aave-supply-borrow/supply_logic.move#325

Descriptions:

In the internal_repay function, after a user fully repays their debt, the code incorrectly sets

the user's borrowing status to true using the set_borrowing function. This indicates that

the user is still considered to have an outstanding loan, even though the variable_debt has

been fully repaid. The correct logic should set the borrowing status to false , reflecting that

the user has no remaining debt. This error could lead to issues such as incorrect interest

calculations, inaccurate debt tracking, and other logic errors that depend on the user's

borrowing status.

 ifif ((variable_debt variable_debt -- payback_amount payback_amount ==== 00)) {{
 user_configuser_config::::set_borrowingset_borrowing((&&mut user_config_mapmut user_config_map,,
((poolpool::::get_reserve_idget_reserve_id((&&reserve_datareserve_data)) asas u256 u256)),, truetrue));;
 poolpool::::set_user_configurationset_user_configuration((on_behalf_ofon_behalf_of,, user_config_map user_config_map));;
 }};;

Suggestion:

It is recommended to modify the code to set the user’s borrowing status to false when the

variable_debt is fully repaid.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

34/42

TBA-1 transfer Transfers an Incorrect Amount

Severity: Critical

Status: Fixed

Code Location:

aave-core/sources/aave-tokens/token_base.move#478

Descriptions:

In the transfer function of the token_base contract, the wrong amount is being

transferred:

fungible_assetfungible_asset::::transfer_with_reftransfer_with_ref((
 transfer_reftransfer_ref,,
 from_walletfrom_wallet,,
 to_walletto_wallet,,
 ((amount amount asas u64 u64))
));;

The correct amount to transfer should be amount_ray_div . Using the incorrect amount

causes transfer failures, leading to issues such as failed liquidations when accepting AToken,

among others.

Suggestion:

Update the code to transfer amount_ray_div instead of amount .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

35/42

TBA-2 The implementation of token_base is incorrect

Severity: Major

Status: Fixed

Code Location:

aave-core/sources/aave-tokens/token_base.move#311;

aave-core/sources/aave-tokens/token_base.move#368

Descriptions:

In the token_base contract, the mint_scaled and burn_scaled functions calculate the

mint and burn amounts based on amount instead of amount_scaled . This can often cause

repayment failures. During repayment, the interest charged can result in more FA being

burned than minted, leading to transaction failures.

 letlet fa fa == fungible_asset fungible_asset::::mintmint((&&managed_fungible_assetmanaged_fungible_asset..mint_refmint_ref,, ((amount amount asas u64 u64))));;

 fungible_assetfungible_asset::::burn_fromburn_from((burn_refburn_ref,, from_wallet from_wallet,, ((amount amount asas u64 u64))));;

Suggestion:

Update the mint_scaled and burn_scaled functions to calculate the mint and burn

amounts based on amount_scaled .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

36/42

TBA-3 The set_frozen_flag() Function Call is Missing in the
transfer() Function

Severity: Medium

Status: Fixed

Code Location:

aave-core/sources/aave-tokens/token_base.move#397-473

Descriptions:

In the mint_scaled() function, the protocol calls fungible_asset::set_frozen_flag() to disable

the store's ability to perform direct transfers of the fungible asset. After that, the asset is

minted to the to_wallet .

 // freeze account// freeze account
 fungible_assetfungible_asset::::set_frozen_flagset_frozen_flag((
 &&managed_fungible_assetmanaged_fungible_asset..transfer_reftransfer_ref,, to_wallet to_wallet,, truetrue
));;

 letlet fa fa == fungible_asset fungible_asset::::mintmint((&&managed_fungible_assetmanaged_fungible_asset..mint_refmint_ref,, ((amount amount asas u64 u64))));;
 fungible_assetfungible_asset::::deposit_with_refdeposit_with_ref((
 &&managed_fungible_assetmanaged_fungible_asset..transfer_reftransfer_ref,, to_wallet to_wallet,, fa fa
));;

However, in the transfer() function, the protocol does not call set_frozen_flag() to disable

the recipient wallet's store's ability to perform direct transfers of the fungible asset. This

creates a potential inconsistency, where the asset's transfer to the recipient is not

accompanied by the same restriction as applied to the sender's wallet, allowing the recipient

to transfer the asset without the intended limitations.

 // transfer fungible asset// transfer fungible asset
 letlet asset asset == get_metadataget_metadata((metadata_addressmetadata_address));;
 letlet transfer_ref transfer_ref == &&obtain_managed_asset_refsobtain_managed_asset_refs((assetasset))..transfer_reftransfer_ref;;
 letlet from_wallet from_wallet == primary_fungible_store primary_fungible_store::::primary_storeprimary_store((sendersender,, asset asset));;
 letlet to_wallet to_wallet ==
 primary_fungible_storeprimary_fungible_store::::ensure_primary_store_existsensure_primary_store_exists((recipientrecipient,, asset asset));;
 fungible_assetfungible_asset::::transfer_with_reftransfer_with_ref((

37/42

 transfer_reftransfer_ref,, from_wallet from_wallet,, to_wallet to_wallet,, ((amount amount asas u64 u64))
));;

Suggestion:

It is recommended to call the set_frozen_flag() function in the transfer() function before

transferring the asset to the to_wallet .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

38/42

TBA-4 Evading Debt

Severity: Medium

Status: Fixed

Code Location:

aave-core/sources/aave-tokens/token_base.move#307-309

Descriptions:

In the protocol, the function mint_scaled utilizes fungible_asset::set_frozen_flag to restrict

accounts from transferring funds within the FungibleStore. The function set_frozen_flag

intended to enable or disable a store's ability to perform direct transfers of the fungible

asset. However, despite this restriction being enforced on the primary FungibleStore by

default, it doesn't adequately address the transfer capabilities of secondary stores. This

loophole allows the potential circumvention of the controls by transferring a token and

variable token through secondary stores, thus creating a possible avenue for users to evade

liabilities.

A more robust approach to addressing this vulnerability is to utilize the set_untransferable

function when creating a token. By doing so, all stores of the fungible asset are set to be

untransferable, effectively preventing any transfers from one account to another, and thus

precluding the possibility of bypassing the frozen flag. Here’s how the corrected code would

implement this solution:

// Set ALL stores for the fungible asset to untransferable.// Set ALL stores for the fungible asset to untransferable.
// This preemptively blocks the ability of any store to be transferred between accounts, // This preemptively blocks the ability of any store to be transferred between accounts,
// ensuring the effective utilization of the frozen flag to restrict unauthorized fund// ensuring the effective utilization of the frozen flag to restrict unauthorized fund
transfers.transfers.
fungible_assetfungible_asset::::set_untransferableset_untransferable((constructor_refconstructor_ref));;

This approach ensures that the susceptibility concerning fund transfers within secondary

stores is properly mitigated, thereby enhancing the security of the protocol against potential

evasion of debt obligations.

Suggestion:

This issue has been fixed. The client has adopted our suggestions.

39/42

Resolution:

The issue has not been fixed in the create_variable_token function.

40/42

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

41/42

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

42/42

	589_page1.pdf
	589_page2.pdf

