
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

AlphaFi Smart Contarct

Mon Dec 09 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

AlphaFi Smart Contarct Audit Report

1 Executive Summary

1.1 Project Information

Description A liquid staking project on sui.

Type DeFi

Auditors MoveBit

Timeline Thu Nov 28 2024 - Mon Dec 09 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/AlphaFiTech/liquid-staking/

Commits 3682e5b4a0f83c1427076a6c9ac92ce4922419c6
1226b080b97cfe60b5c8f73b9b1f73716d27b80c

1/15

https://github.com/AlphaFiTech/liquid-staking/
https://github.com/AlphaFiTech/liquid-staking//tree/3682e5b4a0f83c1427076a6c9ac92ce4922419c6
https://github.com/AlphaFiTech/liquid-staking//tree/1226b080b97cfe60b5c8f73b9b1f73716d27b80c

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV contracts/Move.toml 1aa9bbf8ace928bd4da60ce77148f
a5c780c0917

LST1 contracts/sources/liquid_staking.m
ove

3167837e455531e62cfc2bf581549
0fbd5866d0f

EVE contracts/sources/events.move 06a8d4f8db6422981a143450d868
df5b301d9ae0

FEE contracts/sources/fees.move 192a70ef00877f778b0ea5cb43b7d
30287fb972f

STO contracts/sources/storage.move a451b9416f538e175bcd1f1ff817fe
0f41417b8e

VER contracts/sources/version.move 702c56f0b731264e944a3fc8dd2eb
bc307c5f9e8

CEL contracts/sources/cell.move 8d221cbcdfb36f28f87e4786db27b
7acde86cd07

2/15

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 5 0

Informational 1 1 0

Minor 2 2 0

Medium 2 2 0

Major 0 0 0

Critical 0 0 0

3/15

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/15

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/15

2 Summary

This report has been commissioned by AlphaFi to identify any potential issues and
vulnerabilities in the source code of the AlphaFi smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

FEE-1 Unreasonable Fee Setting Minor Fixed

LST-1 In the flash_stake_start() Function,
the sui_mint_amount should be
Rounded Up

Medium Fixed

LST-2 Lack of Slippage Protection in
Mint Function

Medium Fixed

LST-3 Lack of Events Emit Minor Fixed

STO-1 Unused public(package) Visibility
Function

Informational Fixed

6/15

3 Participant Process

Here are the relevant actors with their respective abilities within the AlphaFi Smart Contract :
Admin

Admin can set the validator addresses and weights of the staking pool through

set_validator_addresses_and_weights<P> .

Admin can update the fee rate through update_fees<P>() .

Admin can generate a new collection cap through generate_new_collection_cap<P>() .

Admin can pause and unpause the staking pool through pause<P>() and

un_pause<P>() .

Admin can collect fees of the staking pool through collect_fees<P>() .

User

User can create a new staking pool through create_lst<P: drop>() .

User can flash loan LST coins and repay SUI coins through flash_stake_start<P:

drop>() and flash_stake_conclude<P: drop>() .

User can stake SUI coins in the pool and get LST coins through mint<P: drop>() .

User can burn LST coins and get SUI coins through redeem<P: drop>() .

7/15

4 Findings

FEE-1 Unreasonable Fee Setting

Severity: Minor

Status: Fixed

Code Location:

contracts/sources/fees.move#163

Descriptions:

In the fees module, the system's fee validation is insufficient, allowing most fees to be set

as high as 100%. If an administrator maliciously sets exorbitant fees, it could lead to

significant user asset losses or disrupt the normal operation of the protocol.

Suggestion:

It is recommended to restrict fees to a reasonable range, such as 0% to 10% or any other

range suitable for the protocol's use case.

8/15

LST-1 In the flash_stake_start() Function, the
sui_mint_amount should be Rounded Up

Severity: Medium

Status: Fixed

Code Location:

contracts/sources/liquid_staking.move#275

Descriptions:

In the flash_stake_start() function, the protocol first calculates the sui_mint_amount based

on the lst_amount .

 selfself..refresh_no_entryrefresh_no_entry<<PP>>((system_statesystem_state,, ctx ctx));;
 // deduct fees// deduct fees
 letlet sui_mint_amount sui_mint_amount == self self..lst_amount_to_sui_amountlst_amount_to_sui_amount((amountamount));;

Then, in the flash_stake_conclude() function, it deposits the SUI.

 assertassert!!((suisui..balancebalance(())..valuevalue(()) >=>= ((sui_amount sui_amount ++ fee fee))));;
 letlet mut sui_balance mut sui_balance == sui sui..into_balanceinto_balance(());;
 // deduct fees// deduct fees
 selfself..feesfees..joinjoin((sui_balancesui_balance..splitsplit((feefee))));;

 selfself..flash_stake_supply_reduceflash_stake_supply_reduce<<PP>>((lst_amountlst_amount));;
 letlet stake_balance stake_balance == sui_balance sui_balance..splitsplit((sui_amountsui_amount));;

 letlet stake_balance_value stake_balance_value == stake_balance stake_balance..valuevalue(());;

This pattern has a standard equivalent in the EVM ecosystem, ERC4626.

https://eips.ethereum.org/EIPS/eip-4626 In ERC4626, there is a description like this:

If (1) it’s calculating the amount

of shares a user has to supply to

receive a given amount of the underlying

tokens or (2) it’s calculating the

amount of underlying tokens a user

9/15

https://eips.ethereum.org/EIPS/eip-4626

has to provide to receive a certain

amount of shares, it should round up.

In the protocol, sui_mint_amount is calculated as sui_mint_amount = total_sui_supply *

lst_amount / total_lst_supply , which currently rounds down.

 fun lst_amount_to_sui_amountfun lst_amount_to_sui_amount<<PP>>((
 selfself:: &&LiquidStakingInfoLiquidStakingInfo<<PP>>,,
 lst_amountlst_amount:: u64 u64
)):: u64 u64 {{
 letlet total_sui_supply total_sui_supply == self self..total_sui_supplytotal_sui_supply(());;
 letlet total_lst_supply total_lst_supply == self self..total_lst_supplytotal_lst_supply(());;

 assertassert!!((total_lst_supply total_lst_supply >> 00,, EZeroLstSupplyEZeroLstSupply));;

 letlet sui_amount sui_amount == ((total_sui_supply total_sui_supply asas u128 u128))
 ** ((lst_amount lst_amount asas u128 u128))
 // ((total_lst_supply total_lst_supply asas u128 u128));;

 sui_amount sui_amount asas u64 u64
 }}

The suggestion is to modify the calculation to round up when calculating the

sui_mint_amount .

Suggestion:

It is recommended to modify the calculation to round up when calculating the

sui_mint_amount

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/15

LST-2 Lack of Slippage Protection in Mint Function

Severity: Medium

Status: Fixed

Code Location:

contracts/sources/liquid_staking.move#292

Descriptions:

The mint function in the protocol lacks slippage protection. Since the mint fee rate can be

set to 100%, an administrator could adjust the mint fee rate without user awareness,

resulting in substantial fees and potential user asset losses.

Suggestion:

It is recommended to add slippage protection or change the mint fee rate limit.

11/15

LST-3 Lack of Events Emit

Severity: Minor

Status: Fixed

Code Location:

contracts/sources/liquid_staking.move#415，426

Descriptions:

The contract lacks appropriate events for some key functions. The lack of event records for

these functions may cause inconvenience in the subsequent tracking and contract status

changes.

Suggestion:

It is recommended to emit events for the functions.

12/15

STO-1 Unused public(package) Visibility Function

Severity: Informational

Status: Fixed

Code Location:

contracts/sources/storage.move#518

Descriptions:

The join_fungible_stake function, declared with public(package) visibility, can only be

invoked within the module. However, this function has not been called anywhere throughout

the entire project.

Suggestion:

It is recommended to remove the function or change its visibility.

13/15

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

14/15

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

15/15

	631_page1.pdf
	631_page2.pdf

