
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Moar Market

Wed Dec 11 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Moar Market Audit Report

1 Executive Summary

1.1 Project Information

Description Moar Market is the Credit Layer for Aptos DeFi. It introduces
the concept of Composable Leverage - giving you credit (up-to
25x) to use across DeFi Protocols

Type DeFi

Auditors MoveBit

Timeline Mon Oct 14 2024 - Wed Dec 11 2024

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/moar-market/cerebro
https://github.com/moar-market/tiered-oracle

Commits https://github.com/moar-market/cerebro:

8b85a2e94c4133d52d13eb58bd8c9541e46f71f6
504749c88ade6e11817c9102fbcf7b20a4e86446
c16764e3f8c99f72d0d29efc073311524ba63551
d31c4f090011615190adf8cbcb0cbb1dbbcc0fc9
96b7d024dbb8c228cfe34d8f60905ce85ae362bb
4ada426f82d2a61304929a324798c8c55bbf2038

https://github.com/moar-market/tiered-oracle:

b0975e9452e50147bea8343c6f8a07b2858ec5c2
28ac0ca1ed236319e68bf832365d1410cd684f39

1/26

https://github.com/moar-market/cerebro
https://github.com/moar-market/tiered-oracle
https://github.com/moar-market/cerebro/tree/8b85a2e94c4133d52d13eb58bd8c9541e46f71f6
https://github.com/moar-market/cerebro/tree/504749c88ade6e11817c9102fbcf7b20a4e86446
https://github.com/moar-market/cerebro/tree/c16764e3f8c99f72d0d29efc073311524ba63551
https://github.com/moar-market/cerebro/tree/d31c4f090011615190adf8cbcb0cbb1dbbcc0fc9
https://github.com/moar-market/cerebro/tree/96b7d024dbb8c228cfe34d8f60905ce85ae362bb
https://github.com/moar-market/cerebro/tree/4ada426f82d2a61304929a324798c8c55bbf2038
https://github.com/moar-market/tiered-oracle/tree/b0975e9452e50147bea8343c6f8a07b2858ec5c2
https://github.com/moar-market/tiered-oracle/tree/28ac0ca1ed236319e68bf832365d1410cd684f39

2/26

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

TOR sources/tiered_oracle.move 20abd7c11203a05dd971d1772a10
975310c87d58

MAT sources/math.move 668465400e2e79f6581fda11340dd
6d3791eb66f

SOR sources/switchboard_oracle.move 8d51190f558cc1bfdd6c081fcf8ca5
3cc2c91c64

POR sources/pyth_oracle.move ca773aa13d56014019ecc8d711e7
c180fbe45c62

STA sources/status.move 0a84e3920ef8e5f08b78e6f170b25
a859002ac09

MOV moar-liquidator/Move.toml 3fa46b66fa0364ff76277b3c69f6a6
76bac50622

MOV3 Move.toml 7408f94bf1b5b3e7dd82fde11703a
b409c676389

UTI moar_strats/sources/utils.move fc9f5d2266c2e858023e7a0a8c8bb
a0a0786f7a3

CWR sources/coin_wrapper.move 7352d1e03a0fd3324522fb661e8e1
92baa3dd290

ORA sources/oracle.move 95efb0e9b6d14e492a7d409b8b37
d31dafd0eb02

PMA sources/package_manager.move a706c7052718687a007592d92a62
93b5dbdaf13c

3/26

LTE moar-liquidator/sources/tests/liqui
dator_tests.move

0660df3e50944e903ca1b78331fb1
00fafdda63e

LIQ moar-liquidator/sources/liquidato
r.move

3ae95c8b29fec79a6eb9a1acbdf4e
71d16988455

TAD moar_strats/sources/adapters/thal
a_adapter.move

9ef7077d97df8b4100c01aeb8f23c
40779ab37e5

PAD moar_strats/sources/adapters/pan
ora_adapter.move

e6d903ad6930e3d15294cd26a6f7
84baf9788cf9

ROU1 sources/router.move cd99f1d7394f5910e1bc81fd1aa2b
84316a6aeec

LEN sources/lens.move 30bed8e65e87aed6caa1db8afdc7
e4e36ed1cfd0

CMA sources/credit_manager.move 12348a4fc8164b9f533006373cd0e
3268c238b41

POO1 sources/pool.move 690a7d78093499d2d67fc78fdc5b3
fe0b2889de2

RMA sources/risk_manager.move 6ac41cd688300a66367122ec8a2e
791e3cb3cc44

IRM sources/interest_rate_model.move 05e2320f18ac4b770d3bf3dbb22e6
85924abc918

UTI1 sources/utils.move e07342f235f50ea232d57e80596fe
e6106204b29

MOV8 moar_strats/Move.toml 08fbc38e063907d07f500efa0fc9a4
0eaeca5193

LAD moar_strats/sources/adapters/liqu
idswap_adapter.move

7613c43cac0c153e5a1a6d03cba4
b7cbb885691f

4/26

ROU moar_strats/sources/router.move 36822c369cf96c41267a4b2899357
b61a1178297

5/26

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 11 10 1

Informational 1 1 0

Minor 2 1 1

Medium 7 7 0

Major 1 1 0

Critical 0 0 0

6/26

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

7/26

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

8/26

2 Summary

This report has been commissioned by Moar to identify any potential issues and
vulnerabilities in the source code of the Moar Market smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 11 issues of varying severity, listed below.

ID Title Severity Status

CMA-1 Lacks A Function To Remove
Allowed Assets

Medium Fixed

CMA-2 Missing a Function to Handle Bad
Debt

Medium Fixed

CMA-3 Unused Constants Minor Fixed

MOV-1 The Tiered Oracle has no Upgrade
Strategy

Medium Fixed

POO-1 The deposit() Function does not
Account for Exceptional Cases

Medium Fixed

POO-2 The Calculation of Shares during
Withdrawal should Round Up

Medium Fixed

POO-3 The icon_url Has no Value Minor Acknowledged

POR-1 Variable Naming Inconsistency in
set Function

Informational Fixed

TOR-1 The Protocol should Abort when
get_price() Returns Stale Prices

Major Fixed

9/26

TOR-2 The last_price Is Not Updated Medium Fixed

TOR-3 Different Assets Should Have
Varying Expiration Times for Their
Prices

Medium Fixed

10/26

3 Participant Process

Here are the relevant actors with their respective abilities within the Moar Market Smart
Contract :
User

Users can provide liquidity through the deposit_entry function.

Users can remove liquidity through the withdraw function.

Users can execute actions through the execute_actions function.

Users can create a credit account through the create_credit_account function.

Users can deposit collateral through the deposit_collateral_entry function.

Users can withdraw collateral through the withdraw_entry function.

Users can add a credit account asset through the add_credit_account_asset_entry

function.

Users can remove a credit account asset through the

remove_credit_account_asset_entry function.

Users can borrow through the borrow_entry function.

Users can repay through the repay function.

Users can execute strategies through the execute_strategy_public function.

Users can liquidate through the liquidate_entry function.

Users can close a credit account through the close_credit_account function.

Governance

Governance can add an allowed asset through the add_allowed_asset function.

Governance can set the piecewise linear model through the

set_piecewise_linear_model function.

Governance can set the liquidation discount through the set_liquidation_discount

function.

Governance can set the LTV through the set_ltv function.

11/26

4 Findings

CMA-1 Lacks A Function To Remove Allowed Assets

Severity: Medium

Status: Fixed

Code Location:

sources/credit_manager.move#695-699

Descriptions:

This function's purpose is to add allowed assets, but once added, there's no way to remove

them. If an allowed asset is attacked or encounters an emergency situation, the protocol will

be unable to remove it.

 publicpublic entry fun entry fun add_allowed_assetadd_allowed_asset((sendersender:: &&signersigner,, assetasset:: ObjectObject<<MetadataMetadata>>))
acquires acquires CreditManagerConfigCreditManagerConfig {{
 utilsutils::::governance_checkgovernance_check((signersigner::::address_ofaddress_of((sendersender))));;
 letlet credit_manager_config credit_manager_config == unchecked_mut_credit_manager_configunchecked_mut_credit_manager_config(());;
 smart_tablesmart_table::::upsertupsert((&&mut credit_manager_configmut credit_manager_config..allowed_assetsallowed_assets,, asset asset,, truetrue));;
 }}

Suggestion:

It is recommended to add a function for removing allowed assets.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/26

CMA-2 Missing a Function to Handle Bad Debt

Severity: Medium

Status: Fixed

Code Location:

sources/credit_manager.move#1

Descriptions:

The protocol currently lacks a method to handle bad debt effectively, which could lead to

unresolved debts impacting the protocol’s overall health and users’ funds.

https://github.com/sentimentxyz/protocol-v2/blob/master/src/PositionManager.sol#L454-

L469

 /// @notice Liquidate a position with bad debt/// @notice Liquidate a position with bad debt
 /// @dev Bad debt positions cannot be liquidated partially/// @dev Bad debt positions cannot be liquidated partially
 functionfunction liquidateBadDebtliquidateBadDebt((address positionaddress position,, DebtDataDebtData[[]] calldata debtData calldata debtData)) external external
nonReentrant nonReentrant {{
 ((DebtDataDebtData[[]] memory repayData memory repayData,, AssetDataAssetData[[]] memory seizeData memory seizeData)) ==
 riskEngineriskEngine..validateBadDebtLiquidationvalidateBadDebtLiquidation((positionposition,, debtData debtData));;

 // liquidator repays some of the bad debt, and receives all of the position assets// liquidator repays some of the bad debt, and receives all of the position assets
 _transferAssetsToLiquidator_transferAssetsToLiquidator((positionposition,, BAD_DEBT_LIQUIDATION_FEEBAD_DEBT_LIQUIDATION_FEE,, seizeData seizeData));; ////
zero protocol feezero protocol fee
 _repayPositionDebt_repayPositionDebt((positionposition,, repayData repayData));;

 // settle remaining bad debt for the given position// settle remaining bad debt for the given position
 uint256uint256[[]] memory debtPools memory debtPools == PositionPosition((payablepayable((positionposition))))..getDebtPoolsgetDebtPools(());;
 uint256 debtPoolsLength uint256 debtPoolsLength == debtPools debtPools..lengthlength;;
 forfor ((uint256 iuint256 i;; i i << debtPoolsLength debtPoolsLength;; ++++ii)) {{
 poolpool..rebalanceBadDebtrebalanceBadDebt((debtPoolsdebtPools[[ii]],, position position));;
 PositionPosition((payablepayable((positionposition))))..repayrepay((debtPoolsdebtPools[[ii]],, typetype((uint256uint256))..maxmax));;
 }}
 }}

Suggestion:

13/26

https://github.com/sentimentxyz/protocol-v2/blob/master/src/PositionManager.sol#L454-L469
https://github.com/sentimentxyz/protocol-v2/blob/master/src/PositionManager.sol#L454-L469

It is recommended to implement a liquidateBadDebt() function, similar to the approach used

in the Sentiment contract.

Resolution:

This issue has been fixed, and the client has implemented the liquidate_bad_debt_entry()

functionality.

14/26

CMA-3 Unused Constants

Severity: Minor

Status: Fixed

Code Location:

sources/credit_manager.move#44

Descriptions:

There are unused constants in the contract.

 constconst E_NOT_FEE_RECIPIENTE_NOT_FEE_RECIPIENT:: u64 u64 == 1313;;

 constconst E_INVALID_DEBT_POOL_COUNTE_INVALID_DEBT_POOL_COUNT:: u64 u64 == 1818;;

Suggestion:

It is recommended to remove unused constants if there's no further design.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/26

MOV-1 The Tiered Oracle has no Upgrade Strategy

Severity: Medium

Status: Fixed

Code Location:

Move.toml#3

Descriptions:

In the Moar Market protocol, we found that the upgrade strategy is compatible.

[[packagepackage]]
name name == "moar""moar"
version version == "0.0.0""0.0.0"
upgrade_policy upgrade_policy == "compatible""compatible"
authors authors == [["Moar Market (tech@moar.market)""Moar Market (tech@moar.market)"]]

However, in the Tiered Oracle protocol, there is no upgrade strategy.

[[packagepackage]]
name name == 'TieredOracle''TieredOracle'
version version == '1.0.0''1.0.0'

Suggestion:

It is recommended to add a compatible upgrade strategy.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/26

POO-1 The deposit() Function does not Account for
Exceptional Cases

Severity: Medium

Status: Fixed

Code Location:

sources/pool.move#661-674

Descriptions:

The deposit() function allows users to deposit FA and receive LP tokens. The protocol calls

convert_amount_to_shares() to calculate the shares, with the formula: shares = amount *

total_shares / total_amount .

 inline fun inline fun convert_amount_to_sharesconvert_amount_to_shares((
 amountamount:: u64 u64,,
 total_amounttotal_amount:: u128 u128,,
 total_sharestotal_shares:: u128 u128,,
 is_round_upis_round_up:: bool bool,,
)):: u64 u64 {{
 ifif ((total_amount total_amount ==== 00)) {{
 amountamount
 }} elseelse ifif ((is_round_upis_round_up)) {{
 ((utilsutils::::mul_div_with_ceilmul_div_with_ceil((((amount amount asas u128 u128)),, total_shares total_shares,, total_amount total_amount)) asas u64 u64))
 }} elseelse {{
 ((math128math128::::mul_divmul_div((((amount amount asas u128 u128)),, total_shares total_shares,, total_amount total_amount)) asas u64 u64))
 }}
 }}

However, the protocol might encounter an extreme case where total_amount = 0 but

total_shares != 0 , causing the protocol to always mint at a 1:1 ratio. The Sentiment contract,

which is nearly identical to this contract, has accounted for this scenario.

https://github.com/sentimentxyz/protocol-v2/blob/master/src/Pool.sol#L373

Suggestion:

17/26

https://github.com/sentimentxyz/protocol-v2/blob/master/src/Pool.sol#L373

It is recommended to revert when pool.totalDepositAssets == 0 && pool.totalDepositShares

!= 0 .

Resolution:

This issue has been fixed, and the client handles the extreme scenario where the total pool

assets are 0, but the total shares are not 0.

18/26

POO-2 The Calculation of Shares during Withdrawal should
Round Up

Severity: Medium

Status: Fixed

Code Location:

sources/pool.move#408

Descriptions:

The purpose of the withdraw() function is to burn the given amount of LP tokens and

transfer the underlying assets to the receiver's primary fungible store. In this function, the

protocol calls convert_amount_to_shares() to calculate the shares that need to be burned.

letlet lp_address lp_address == signer signer::::address_ofaddress_of((lplp));;
 letlet pool pool == get_pool_by_idget_pool_by_id((pool_idpool_id));;
 letlet pool_data pool_data == pool_datapool_data((&&poolpool));;
 // Calculate the amounts of tokens redeemed from the pool.// Calculate the amounts of tokens redeemed from the pool.
 letlet lp_tokens_supply lp_tokens_supply == option option::::destroy_somedestroy_some((fungible_assetfungible_asset::::supplysupply((poolpool))));;
 letlet shares shares == convert_amount_to_sharesconvert_amount_to_shares((amountamount,, pool_data pool_data..total_depositedtotal_deposited,,
lp_tokens_supplylp_tokens_supply,, falsefalse));;
 assertassert!!((shares shares >> 00,, E_LP_ZERO_SHARESE_LP_ZERO_SHARES));;
 assertassert!!((!!pool_datapool_data..is_pausedis_paused,, E_POOL_PAUSEDE_POOL_PAUSED));;

It is important to note that the current implementation uses round down, but it should use

round up.

Suggestion:

It is recommended to round up when calculating the shares to be burned during the

withdrawal process.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/26

POO-3 The icon_url Has no Value

Severity: Minor

Status: Acknowledged

Code Location:

sources/pool.move#622

Descriptions:

In the create_lp_token() function, the icon_uri is an empty string and should be a valid URI.

 primary_fungible_storeprimary_fungible_store::::create_primary_store_enabled_fungible_assetcreate_primary_store_enabled_fungible_asset((
 lp_token_constructor_reflp_token_constructor_ref,,
 optionoption::::nonenone(()),,
 token_nametoken_name,,
 token_nametoken_name,,
 fungible_assetfungible_asset::::decimalsdecimals((tokentoken)),, // lp token decimals must be same as the// lp token decimals must be same as the
underlying tokenunderlying token
 stringstring::::utf8utf8((bb"""")),, // @todo change this// @todo change this
 stringstring::::utf8utf8((bb"https://moar.market/""https://moar.market/"))
));;

Suggestion:

It is recommended to modify the value of the icon_uri string.

20/26

POR-1 Variable Naming Inconsistency in set Function

Severity: Informational

Status: Fixed

Code Location:

sources/pyth_oracle.move#22-23

Descriptions:

The variable name switchboard_oracle in the set function does not accurately reflect its

purpose. It is intended to represent an instance of the PythOracle struct, but the naming

could lead to confusion regarding its functionality and association with the Pyth oracle

system.

 publicpublic fun fun setset((asset_oracle_signerasset_oracle_signer:: &&signersigner,, feedfeed:: vector vector<<u8u8>>)) acquires acquires PythOraclePythOracle {{
 letlet asset_oracle_address asset_oracle_address == signer signer::::address_ofaddress_of((asset_oracle_signerasset_oracle_signer));;
 ifif ((existsexists<<PythOraclePythOracle>>((asset_oracle_addressasset_oracle_address)))) {{
 letlet switchboard_oracle switchboard_oracle == borrow_global_mut borrow_global_mut<<PythOraclePythOracle>>((asset_oracle_addressasset_oracle_address));;
 switchboard_oracleswitchboard_oracle..feedfeed == feed feed;;
 }} elseelse {{
 move_tomove_to((asset_oracle_signerasset_oracle_signer,, PythOraclePythOracle {{
 feedfeed
 }}))
 }}
 }}

Suggestion:

It is recommended to rename the variable switchboard_oracle to pyth_oracle within the

set function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/26

TOR-1 The Protocol should Abort when get_price() Returns
Stale Prices

Severity: Major

Status: Fixed

Code Location:

sources/tiered_oracle.move#109-147

Descriptions:

In the get_price() function, if tier_1_status is not normal and there is no tier_2 oracle, the

protocol still returns the swap price.

 ifif ((statusstatus::::is_normal_statusis_normal_status((tier_1_statustier_1_status)) |||| asset_oracle asset_oracle..tier_2tier_2 ==== ORACLE_NULLORACLE_NULL)) {{
 returnreturn ((tier_1_statustier_1_status,, tier_1_price tier_1_price))
 }};;

This is incorrect, as stale prices can lead to improper estimation of users' collateral and

potentially result in liquidation of their positions. Similarly, if there is a tier_2 oracle and both

return stale prices, the function should also revert.

Suggestion:

It is recommended to revert when the protocol returns stale prices.

Resolution:

This issue has been fixed. The client has adjusted the staleness and brokenness durations

according to our tolerance levels.

22/26

TOR-2 The last_price Is Not Updated

Severity: Medium

Status: Fixed

Code Location:

sources/tiered_oracle.move#41

Descriptions:

The last_price is not updated. Throughout the entire price retrieval process, there is no

update to the last_price . This means that the deviate_largely_from_old_price function

consistently returns the initial value of 0.

 smart_tablesmart_table::::addadd((&&mut oraclemut oracle..assetsassets,, asset asset,, AssetOracleAssetOracle {{
 extend_refextend_ref:: object object::::generate_extend_refgenerate_extend_ref((&&asset_constructor_refasset_constructor_ref)),,
 tier_1tier_1:: 00,,
 tier_2tier_2:: 00,,
 last_pricelast_price:: fixed_point64 fixed_point64::::zerozero(()),,
 staleness_secondsstaleness_seconds:: DEFAULT_STALENESS_SECONDSDEFAULT_STALENESS_SECONDS,,
 broken_secondsbroken_seconds:: DEFAULT_BROKEN_SECONDSDEFAULT_BROKEN_SECONDS,,
 price_deviate_reject_pctprice_deviate_reject_pct:: DEFAULT_PRICE_DEVIATE_REJECT_PCTDEFAULT_PRICE_DEVIATE_REJECT_PCT,,
 }}));;

 publicpublic fun fun deviate_largely_from_old_pricedeviate_largely_from_old_price((
 price_deviate_reject_pctprice_deviate_reject_pct:: u64 u64,,
 new_pricenew_price:: FixedPoint64FixedPoint64,,
 old_priceold_price:: FixedPoint64FixedPoint64
)):: bool bool {{
 fixed_point64fixed_point64::::to_u128to_u128((old_priceold_price)) >> 00 &&&& get_price_diff_pctget_price_diff_pct((new_pricenew_price,, old_price old_price)) >=>=
price_deviate_reject_pctprice_deviate_reject_pct
 }}

Suggestion:

It is recommended to update the last_price when a valid price is obtained.

Resolution:

This issue has been fixed. The client has removed this feature.

23/26

TOR-3 Different Assets Should Have Varying Expiration Times
for Their Prices

Severity: Medium

Status: Fixed

Code Location:

sources/tiered_oracle.move#88-90

Descriptions:

In the register function, the oracle's staleness_seconds , broken_seconds , and

price_deviate_reject_pct for each asset are currently set using constant default

configurations. However, the expiration times and related parameters for different assets

should be adjustable individually, rather than being controlled solely by these constants.

Different assets have varying levels of volatility.

 constconst DEFAULT_STALENESS_SECONDSDEFAULT_STALENESS_SECONDS:: u64 u64 == 900900;;
 constconst DEFAULT_BROKEN_SECONDSDEFAULT_BROKEN_SECONDS:: u64 u64 == 36003600;;
 constconst DEFAULT_PRICE_DEVIATE_REJECT_PCTDEFAULT_PRICE_DEVIATE_REJECT_PCT:: u64 u64 == 2020;;

Suggestion:

It is recommended to set different staleness_seconds, broken_seconds, and

price_deviate_reject_pct values for different assets.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

24/26

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

25/26

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

26/26

	634_page1.pdf
	634_page2.pdf

