
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

AlphaFi Smart Contract

Thu Jun 27 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

AlphaFi Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description A Yield Aggregator on SUI.

Type DeFi

Auditors MoveBit

Timeline Mon Jun 17 2024 - Thu Jun 27 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/AlphaFiTech/contracts

Commits e4cca71655209e99c0d484e0ed60a92a4f7d42de
bbe315c4dcac28c6840612a21f5d083311be67db

1/14

https://github.com/AlphaFiTech/contracts
https://github.com/AlphaFiTech/contracts/tree/e4cca71655209e99c0d484e0ed60a92a4f7d42de
https://github.com/AlphaFiTech/contracts/tree/bbe315c4dcac28c6840612a21f5d083311be67db

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV alphafi/Move.toml 877640e7af82d058351ddecfe47ce
bf5cfd802c5

ASP alphafi/sources/cetus_pool/alpha_s
ui_pool.move

7c21aa32a9492c94e281d7d38b94
ce97fb84897b

CPO alphafi/sources/cetus_pool/cetus_p
ool.move

9aaf6fe42367d5c5af4d81a0f372d7
bdc4706f03

ASI alphafi/sources/cetus_pool/alpha_s
ui_investor.move

01d70ceca56bd86d4e61b4c22a1d
18fb3ce625d7

CIN alphafi/sources/cetus_pool/cetus_i
nvestor.move

eb003b95afd0dc97cfc83612163c9
40779c9d402

DIS alphafi/sources/distributor.move c66d85517f9f57210dcb0b97c9a9b
a64dc19c2b7

ALP alphafi/sources/alphapool.move a547f7293d2756675254387684396
c329a7cd661

CVE alphafi/sources/current_version.m
ove

7a6c8b4d779447e471d58ddd8333
ad4c4dae5cd7

ERR alphafi/sources/error.move cc746d71b714508402bd52b1cfba
d045d152e678

VER alphafi/sources/version.move c5433cec82d4b961b2e32fdb596c3
26a60ef2128

ALL alphafi/sources/allocator.move 0bf198f207ad427831c99781cc018
9187d0a9066

2/14

CON alphafi/sources/converter.move 3938c56f8d81a2a0b8aee72de28a
4bc092b818b9

MOV6 alpha/Move.toml 4bcac731580c6ff779ded3801ad06
7f6a27392e1

ALP1 alpha/sources/alpha.move eff0fd09c945d949b1bd943d35835
9351f535c3d

3/14

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 1 1

Informational 0 0 0

Minor 1 0 1

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

4/14

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

5/14

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/14

2 Summary

This report has been commissioned by AlphaFi to identify any potential issues and
vulnerabilities in the source code of the AlphaFi smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

ASI-1 Self Dos in Rebalance Medium Fixed

DIS-1 Lack of Events Emit Minor Acknowledged

7/14

3 Participant Process

Here are the relevant actors with their respective abilities within the AlphaFi Smart Contract :
Admin

The Admin can create an investor through create_investor() .

The Admin can add reward eligible field throguh add_rewards_eligible_field() .

The Admin can set reward eligible field through set_rewards_eligible_field() .

The Admin can set the performance fee of an investor through

set_performance_fee() .

The Admin can take liquidity from the old position in chunks and supply to a new

range through rebalance() .

The Admin can open a new position with a wider range and shift all assets from the

previous position to the new position through reposition() .

The Admin can create a pool or a distributor through create() .

The Admin can set deposit fee or withdraw fee through set_deposit_fee() or

set_withdrawal_fee() .

The Admin can set lock period through set_lock_period() .

The Admin can add more admins through add_admin() .

The Admin can start the alpha minting through

set_start_timestamp_and_destroy_cap() .

The Admin can change fee receiving, airport,team,dust and onhold receipts

addresses through

change_fee_wallet_address() , change_airdrop_wallet_address() , change_team_wallet_address

change_dust_wallet_address() , change_onhold_receipts_wallet_address() .

The Admin can add a new pool to allocator through add_new_pool() .

The Admin can remove a reward type through remove_unlock_per_second() .

The Admin can set weights of multiple pools for a particular reward type through

set_weights() .

The Admin can add a new reward to be distributed to pools through add_reward() .

8/14

User

The User can collects all trade fee rewards from the trades happening in the range

and reinvest them as liquidity in the position to autocompound user's supply through

autocompound() .

The User can receive all rewards for the current pool through

get_user_rewards_all() .

The User can supply tokens to a particular pool through user_deposit() or

deposit() .

The User can withdraw tokens from a particular pool through user_withdraw() or

withdraw() .

The User can updates the pool with all rewards through get_pool_rewards_all() .

The User can transfer tokens from team_wallet_balance to team_wallet_address

after 300 days through withdraw_team_balance() .

The User can transfer tokens from airdrop_wallet_balance to airdrop_wallet

through withdraw_airdrop_balance() .

9/14

4 Findings

ASI-1 Self Dos in Rebalance

Severity: Medium

Status: Fixed

Code Location:

alphafi/sources/cetus_pool/alpha_sui_investor.move#177;

alphafi/sources/cetus_pool/cetus_investor.move#178

Descriptions:

In the rebalance function, the liquidity per loop and the remaining liquidity (leftover) are

calculated first, and then the corresponding amount of liquidity is removed from the cetus

pool in each loop. However, when the allocated liquidity is exactly divisible by the number of

loops, the leftover will be 0. In the final iteration, this results in removing 0 liquidity from

the cetus pool , causing the program to terminate because the cetus pool requires the

removed liquidity amount to be greater than 0, otherwise it will abort.

let mut liquidity_per_loop = liquidity/(loops as u128);

 let leftover = liquidity % (loops as u128);

 let mut i = 0;

 while(i < (loops+1)){

 if(i == loops){

 liquidity_per_loop = leftover;

 };

 let (bal_a, bal_b) = pool::remove_liquidity<T,S>(config, pool, &mut position,

liquidity_per_loop, clock);

//...

}

The function remove_liquidity() of cetus is called as follows.

public fun remove_liquidity<CoinTypeA, CoinTypeB>(

 config: &GlobalConfig,

10/14

 pool: &mut Pool<CoinTypeA, CoinTypeB>,

 position_nft: &mut Position,

 delta_liquidity: u128,

 clock: &Clock,

): (Balance<CoinTypeA>, Balance<CoinTypeB>) {

 checked_package_version(config);

 assert!(!pool.is_pause, EPoolIsPaused);

 assert!(delta_liquidity > 0, ELiquidityIsZero);

//...

}

Suggestion:

It is recommended to end the loop when the leftover is 0.

Resolution:

The client modified the code and fixed this issue.

11/14

DIS-1 Lack of Events Emit

Severity: Minor

Status: Acknowledged

Code Location:

alphafi/sources/distributor.move#169-197

Descriptions:

The contract lacks appropriate events for monitoring sensitive operations, which could

make it difficult to track sensitive actions or detect potential issues.

Suggestion:

It is recommended to emit events for those important functions.

12/14

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

13/14

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

14/14

	427_page1.pdf
	427_page2.pdf

