
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

BIRDS

Fri Sep 27 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

BIRDS Audit Report

1 Executive Summary

1.1 Project Information

Description A Blockchain Game and Reward Protocol

Type Game

Auditors MoveBit

Timeline Wed Sep 25 2024 - Fri Sep 27 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Bird0x02/bird-contracts

Commits 1e6f57ad489b790d4770aa30ba0e8d707bd79188
f2a478d4e9cb3ab37164ff81ab101b69add4c7ba
62725607dc65314d6bd467ddf922fb621fc9968d

1/17

https://github.com/Bird0x02/bird-contracts
https://github.com/Bird0x02/bird-contracts/tree/1e6f57ad489b790d4770aa30ba0e8d707bd79188
https://github.com/Bird0x02/bird-contracts/tree/f2a478d4e9cb3ab37164ff81ab101b69add4c7ba
https://github.com/Bird0x02/bird-contracts/tree/62725607dc65314d6bd467ddf922fb621fc9968d

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

VER sources/version.move 673b69d03e6e867b1ebbd8c32be9
6130f3bfa916

CVA sources/cap_vault.move 3ec0485728b6fb4faa8135464eb97
8f4f711121e

MOV Move.toml 93118a24c946f2fafeae55b17db23
e65766fbd6e

BEN sources/bird_entries.move 4d8903fa1086cd60ab61b6593252
9457ae0a5cda

BIR sources/bird.move 2cb401e599fa8006222b066086ca2
5a03da25a82

2/17

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 7 0

Informational 0 0 0

Minor 2 2 0

Medium 3 3 0

Major 2 2 0

Critical 0 0 0

3/17

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/17

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/17

2 Summary

This report has been commissioned by BIRDS to identify any potential issues and
vulnerabilities in the source code of the BIRDS smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

BIR-1 checkIn.amount Has not been
Incremented

Major Fixed

BIR-2 Malicious Actors can Steal Rewards
from the Protocol

Major Fixed

BIR-3 checkin.last_time Has not been
Updated

Medium Fixed

BIR-4 In the action() Function, the Total
Quantity is Updated Incorrectly

Medium Fixed

BIR-5 Missing Validator Fee Logic in Bird
Store

Medium Fixed

BIR-6 Unused Constants Minor Fixed

BIR-7 There is no Case where
rewardPool.reward_limit Can be

Less Than 0

Minor Fixed

6/17

3 Participant Process

Here are the relevant actors with their respective abilities within the BIRDS Smart Contract :
Admin

Admin can update the validator by calling update_validator .

Admin can create a reward pool by calling createRewardPool .

Admin can configure a reward pool by calling configRewardPool .

Admin can perform an emergency reward withdrawal by calling

emergencyRewardWithdraw .

Admin can transfer capabilities to a new owner by calling transfer_cap .

Admin can revoke capabilities by calling revoke_cap .

User

User can perform an action by calling mineBird .

User can register by calling register .

User can deposit rewards into a pool by calling depositReward .

User can claim rewards by calling claimReward .

User can claim capabilities by calling claim_cap .

User can sponsor other users' gas by calling sponsor_gas .

User can mint archive nft by calling mineNft .

7/17

4 Findings

BIR-1 checkIn.amount Has not been Incremented

Severity: Major

Status: Fixed

Code Location:

sources/bird.move#209

Descriptions:

In the checkIn() function, the protocol increments birdArchieve.break_egg.amount instead

of birdArchieve.checkin.amount .

 fun fun checkIncheckIn((birdArchievebirdArchieve:: &&mut mut BirdArchieveBirdArchieve,, ownerowner:: address address,, amountamount:: u64 u64,, sclocksclock::
&&ClockClock,, ctxctx:: &&TxContextTxContext)) {{
 letlet sender sender == sendersender((ctxctx));;
 assertassert!!((owner owner ==== sender sender,, ERR_BAD_USERERR_BAD_USER));;
 assertassert!!((amount amount >> 00,, ERR_BAD_AMTERR_BAD_AMT));;

 birdArchievebirdArchieve..break_eggbreak_egg..amountamount == birdArchieve birdArchieve..break_eggbreak_egg..amountamount ++ amount amount;;

Suggestion:

It is recommended to increment birdArchieve.checkin.amount .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

8/17

BIR-2 Malicious Actors can Steal Rewards from the Protocol

Severity: Major

Status: Fixed

Code Location:

sources/bird.move#428-468

Descriptions:

In the claimReward() function, the protocol only checks that the nonce must be greater

than birdArchieve.nonce , but it does not verify whether this nonce comes from the same

birdArchieve .

 assertassert!!((objectobject::::id_addressid_address((rewardPoolrewardPool)) ==== poolId poolId,,
ERR_BAD_REWARD_POOL_UNMATCHEDERR_BAD_REWARD_POOL_UNMATCHED));;
 assertassert!!((nonce nonce >> birdArchieve birdArchieve..noncenonce,, ERR_BAD_NONCEERR_BAD_NONCE));;

This oversight allows for the replay of signatures. If a malicious attacker has a valid

signature, they can create N BirdArchive instances and invoke claimReward() to steal

rewards from the protocol. Below is the PoC code.

fun fun test_claim_rewardtest_claim_reward(()) {{
 letlet scenario_val scenario_val == scenarioscenario(());;
 letlet scenario scenario == &&mut scenario_valmut scenario_val;;
 letlet ctx ctx == ctxctx((scenarioscenario));;
 letlet clock clock == clock clock::::create_for_testingcreate_for_testing((ctxctx));;
 init_envinit_env((scenarioscenario));;
 next_txnext_tx((scenarioscenario,, ADMINADMIN));;
 change_validatorchange_validator((PUB_KEY_CLAIMPUB_KEY_CLAIM,, scenario scenario));;

 next_txnext_tx((scenarioscenario,, USERUSER));;
 letlet pool pool == createRewardPoolcreateRewardPool((scenarioscenario));;

 //print the pool address to update object value//print the pool address to update object value
 debugdebug::::printprint((&&objectobject::::id_addressid_address((&&poolpool))));;

 next_txnext_tx((scenarioscenario,, ADMINADMIN));;
 configRewardPoolconfigRewardPool((&&mut poolmut pool,, truetrue,, REWARD_LIMITREWARD_LIMIT,, scenario scenario));;

9/17

 next_txnext_tx((scenarioscenario,, USERUSER));;
 depositRewarddepositReward((USERUSER,,&&mut poolmut pool,, REWARD_VALUEREWARD_VALUE,, &&clockclock,, scenario scenario));;

 next_txnext_tx((scenarioscenario,, USERUSER));;
 debugdebug::::printprint((&&utf8utf8((bb"Claim Reward:""Claim Reward:"))));;
 claimRewardclaimReward((SIG_CLAIMSIG_CLAIM,, MSG_CLAIMMSG_CLAIM,,&&mut poolmut pool,, scenario scenario));;
 debugdebug::::printprint((&&utf8utf8((bb"Claim Reward:""Claim Reward:"))));;
 claimRewardclaimReward((SIG_CLAIMSIG_CLAIM,, MSG_CLAIMMSG_CLAIM,,&&mut poolmut pool,, scenario scenario));;
 debugdebug::::printprint((&&utf8utf8((bb"Claim Reward:""Claim Reward:"))));;
 claimRewardclaimReward((SIG_CLAIMSIG_CLAIM,, MSG_CLAIMMSG_CLAIM,,&&mut poolmut pool,, scenario scenario));;

 clockclock::::destroy_for_testingdestroy_for_testing((clockclock));;
 test_scenariotest_scenario::::endend((scenario_valscenario_val));;
 return_sharedreturn_shared((poolpool));;
 }}

Running sui move test test_claim_reward reveals that the user can claim the reward three

times.

RunningRunning MoveMove unit tests unit tests
[[debugdebug]] @ @0x1611edd9a9d42dbcd9ae773ffa22be0f6017b00590959dd5c767e4efcd34cd0b0x1611edd9a9d42dbcd9ae773ffa22be0f6017b00590959dd5c767e4efcd34cd0b
[[debugdebug]] "Claim Reward:""Claim Reward:"
[[debugdebug]] "Claim Reward:""Claim Reward:"
[[debugdebug]] "Claim Reward:""Claim Reward:"
[[PASSPASS]] bird bird::::bird_testbird_test::::test_claim_rewardtest_claim_reward
TestTest result result:: OKOK.. TotalTotal tests tests:: 11;; passed passed:: 11;; failed failed:: 00

Suggestion:

It is recommended to mark signatures that have already been used.

Resolution:

This issue has been fixed,the client has added a check for _sender == owner .

10/17

BIR-3 checkin.last_time Has not been Updated

Severity: Medium

Status: Fixed

Code Location:

sources/bird.move#204-216

Descriptions:

In the checkIn() function, the protocol only increments the amount without updating the

timestamp.

 fun fun checkIncheckIn((birdArchievebirdArchieve:: &&mut mut BirdArchieveBirdArchieve,, ownerowner:: address address,, amountamount:: u64 u64,, sclocksclock::
&&ClockClock,, ctxctx:: &&TxContextTxContext)) {{
 letlet sender sender == sendersender((ctxctx));;
 assertassert!!((owner owner ==== sender sender,, ERR_BAD_USERERR_BAD_USER));;
 assertassert!!((amount amount >> 00,, ERR_BAD_AMTERR_BAD_AMT));;

 birdArchievebirdArchieve..break_eggbreak_egg..amountamount == birdArchieve birdArchieve..break_eggbreak_egg..amountamount ++ amount amount;;

 emitemit((CheckinEventCheckinEvent {{
 ownerowner,,
 amountamount,,
 timestamptimestamp:: clock clock::::timestamp_mstimestamp_ms((sclocksclock))
 }}));;
 }}

Additionally, BirdArchieve.last_time has not been updated.

Suggestion:

It is recommended to update last_time .

Resolution:

This issue has been fixed, and the protocol has updated the time.

11/17

BIR-4 In the action() Function, the Total Quantity is Updated
Incorrectly

Severity: Medium

Status: Fixed

Code Location:

sources/bird.move#270-277

Descriptions:

In the action() function, birdStore.total_checkin and birdStore.total_break are

incremented by 1 each time.

//route//route
 ifif ((type type ==== ACTION_CHECKINACTION_CHECKIN)) {{
 birdStorebirdStore..total_checkintotal_checkin == birdStore birdStore..total_checkintotal_checkin ++ 11;;
 checkIncheckIn((birdArchievebirdArchieve,, owner owner,, amount amount,, sclock sclock,, ctx ctx));;
 }}
 elseelse ifif ((type type ==== ACTION_BREAK_EGGACTION_BREAK_EGG)) {{
 birdStorebirdStore..total_breaktotal_break == birdStore birdStore..total_breaktotal_break ++ 11;;
 breakEggbreakEgg((birdArchievebirdArchieve,, owner owner,, amount amount,, sclock sclock,, ctx ctx));;
 }}

Please confirm whether they should be incremented by 1 or by the amount.

Suggestion:

It is recommended to update the correct quantity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/17

BIR-5 Missing Validator Fee Logic in Bird Store

Severity: Medium

Status: Fixed

Code Location:

sources/bird.move#136-143

Descriptions:

In the bird store, the validator_fee_enabled and validator_fee are only initialized during

the setup, as shown below:

letlet birdStore birdStore == BirdStoreBirdStore {{
 idid:: objectobject::::newnew((ctxctx)),,
 total_breaktotal_break:: 00,,
 total_checkintotal_checkin:: 00,,
 validatorvalidator:: optionoption::::nonenone(()),,
 validator_fee_enabledvalidator_fee_enabled:: falsefalse,,
 validator_feevalidator_fee:: 00
}};;

However, there are no operations to modify validator_fee_enabled and validator_fee , and

no logic in the claimReward function to determine whether a fee should be charged.

Suggestion:

It is recommended to add logic to handle updates to validator_fee_enabled and

validator_fee , as well as a check in the claimReward function to determine if a fee should

be applied.

Resolution:

This issue has been fixed. The client has removed the logic.

13/17

BIR-6 Unused Constants

Severity: Minor

Status: Fixed

Code Location:

sources/bird.move#33

Descriptions:

There are unused constants in the contract.

 constconst ERR_BAD_REWARD_ADMIN_OWNERERR_BAD_REWARD_ADMIN_OWNER:: u64 u64 == 80088008;;

Suggestion:

It is recommended to remove unused constants if there's no further design.

Resolution:

This issue has been fixed. The client has removed unused constants.

14/17

BIR-7 There is no Case where rewardPool.reward_limit Can be
Less Than 0

Severity: Minor

Status: Fixed

Code Location:

sources/bird.move#345

Descriptions:

In the claimReward() function, if rewardPool.reward_limit <= 0 or rewardPool.reward_limit

>= amount , the transaction will revert.

 assertassert!!((objectobject::::id_addressid_address((rewardPoolrewardPool)) ==== poolId poolId,,
ERR_BAD_REWARD_POOL_UNMATCHEDERR_BAD_REWARD_POOL_UNMATCHED));;
 assertassert!!((nonce nonce >> birdArchieve birdArchieve..noncenonce,, ERR_BAD_NONCEERR_BAD_NONCE));;
 assertassert!!((rewardPoolrewardPool..reward_limitreward_limit <=<= 00 |||| ((rewardPoolrewardPool..reward_limitreward_limit >=>= amount amount)) ,,
ERR_BAD_REWARD_POOL_LIMITERR_BAD_REWARD_POOL_LIMIT));;

However, since rewardPool.reward_limit is of type u64 , it cannot be less than 0. Therefore,

it is recommended to change the condition from rewardPool.reward_limit <= 0 to

rewardPool.reward_limit == 0 .

Suggestion:

It is recommended to change the condition from rewardPool.reward_limit <= 0 to

rewardPool.reward_limit == 0 .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/17

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

16/17

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

17/17

	549_page1.pdf
	549_page2.pdf

