
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Kai Leverage

Tue Aug 06 2024

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Kai Leverage Audit Report

1 Executive Summary

1.1 Project Information

Description A lending liquidity aggregation protocol

Type DeFi

Auditors MoveBit

Timeline Tue Jun 25 2024 - Tue Aug 06 2024

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/kklas/kai-leverage-movebit

Commits cb6472de651a3a70c17f2a175ffc4d55d41586c9
8e5d2dd6a382d325f24a3c428efb393cc52423a1
60fde849b0ae0428470fd97bdcd383881aa2f76a

1/18

https://github.com/kklas/kai-leverage-movebit
https://github.com/kklas/kai-leverage-movebit/tree/cb6472de651a3a70c17f2a175ffc4d55d41586c9
https://github.com/kklas/kai-leverage-movebit/tree/8e5d2dd6a382d325f24a3c428efb393cc52423a1
https://github.com/kklas/kai-leverage-movebit/tree/60fde849b0ae0428470fd97bdcd383881aa2f76a

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

AIN kai-leverage/sources/access_init.m
ove

4cbc6488eae731889593520adde6
cf7084309d66

UTI1 kai-leverage/sources/util.move d97b9e357c2b8b9d05695a16f541
3649ef313d94

PIE kai-leverage/sources/primitives/pie
cewise.move

7b615f04eb976475897c1ac549014
3afa8fe32e2

FLO kai-leverage/sources/clmm/flowx.m
ove

1908d4772f0db6190d4610c0555a
398b19edf545

PMO kai-leverage/sources/clmm/positio
n_model.move

2e0f6e57b6ec180775612562bb6a
0dfbd599b51e

PCO kai-leverage/sources/clmm/positio
n_core.move

696500a61e35444e436613edabd3
201d61483b14

TUR kai-leverage/sources/clmm/turbos.
move

36c0131381e951863e5ee7aa32a0
427db67f003b

CET kai-leverage/sources/clmm/cetus.
move

70b91d4cec5edd34dede7a050d2b
9081fdb6e39f

SPO kai-leverage/sources/supply_pool.
move

20ab7a23a00eb95b094f4b68cef56
6518b32a5f5

BBA kai-leverage/sources/primitives/bal
ance_bag.move

04d22050bbd79420c14c5b0c8617
2747628a256c

EQU kai-leverage/sources/primitives/eq
uity.move

f4f98213027bb7383abe26a732f49
abc620dd24f

2/18

DEB kai-leverage/sources/primitives/de
bt.move

504b164b93b2097f6aa642cf5a73b
0133e7b2ed2

DBA kai-leverage/sources/primitives/de
bt_bag.move

0cd2899b773120ed3e8f1c3494b4
1d08fad54a82

DIN kai-leverage/sources/debt_info.mo
ve

0b7171f4e5c23b010df48cae8b126
f2045a35343

PYT1 kai-leverage/sources/pyth.move 98811b42d10e555feacaafc69f61d
73850affc09

ACC access-management/sources/acce
ss.move

f431d0f8101928d4696249b1bb601
dd6a6377f69

DMA access-management/sources/dyna
mic_map.move

1b3c2184521260ad0996e4d8e4a5
a4542518c212

3/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 4 4 0

Informational 0 0 0

Minor 0 0 0

Medium 1 1 0

Major 3 3 0

Critical 0 0 0

4/18

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

5/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/18

2 Summary

This report has been commissioned by Kuna Labs to identify any potential issues and
vulnerabilities in the source code of the Kai Leverage smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 4 issues of varying severity, listed below.

ID Title Severity Status

POS-1 The Current Price Range Check is
Incorrect

Major Fixed

PYT-1 Getting the expo from pyth is
Incorrect

Major Fixed

SPO-1 The Administrator will Receive
fewer Shares than Expected

Medium Fixed

POS1-1 Create Position Fails Major Fixed

7/18

3 Participant Process

Here are the relevant actors with their respective abilities within the Kai Leverage Smart
Contract :
Admin

The admin can set whether new positions are allowed through the

set_allow_new_positions function.

The admin can set the minimum liquidity start price delta in basis points through the

set_min_liq_start_price_delta_bps function.

The admin can set the minimum initial margin in basis points through the

set_min_init_margin_bps function.

The admin can add an empty Pyth configuration through the

config_add_empty_pyth_config function.

The admin can set the maximum age of the Pyth configuration in seconds through the

set_pyth_config_max_age_secs function.

The admin can allow a Pyth price information oracle (PIO) through the

pyth_config_allow_pio function.

The admin can disallow a Pyth price information oracle (PIO) through the

pyth_config_disallow_pio function.

The admin can set the deleverage margin in basis points through the

set_deleverage_margin_bps function.

The admin can set the base deleverage factor in basis points through the

set_base_deleverage_factor_bps function.

The admin can set the liquidation margin in basis points through the

set_liq_margin_bps function.

The admin can set the base liquidation factor in basis points through the

set_base_liq_factor_bps function.

The admin can set the liquidation bonus in basis points through the

set_liq_bonus_bps function.

The admin can set the maximum position liquidity through the set_max_position_l

function.

8/18

The admin can set the maximum global liquidity through the set_max_global_l

function.

The admin can set the rebalance fee in basis points through the

set_rebalance_fee_bps function.

The admin can set the liquidation fee in basis points through the set_liq_fee_bps

function.

The admin can set the position creation fee in SUI through the

set_position_creation_fee_sui function.

User

The user can create a position ticket through the create_position_ticket function.

The user can borrow X for a position through the borrow_for_position_x function.

The user can borrow Y for a position through the borrow_for_position_y function.

The user can create a position through the create_position function.

The user can create a position ticket through the create_position_ticket function.

The user can create a deleverage ticket through the create_deleverage_ticket

function.

The user can deleverage through the deleverage function.

The user can liquidate collateral X through the liquidate_col_x function.

The user can liquidate collateral Y through the liquidate_col_y function.

The user can reduce through the reduce function.

The user can add liquidity through the add_liquidity function.

The user can add liquidity with a fixed coin amount through the add_liquidity_fix_coin

function.

The user can repay debt X through the repay_debt_x function.

The user can repay debt Y through the repay_debt_y function.

The user can collect fees during rebalancing through the rebalance_collect_fee

function.

9/18

The user can collect rewards during rebalancing through the

rebalance_collect_reward function.

The user can add liquidity during rebalancing through the rebalance_add_liquidity

function.

The user can add liquidity with a fixed coin amount during rebalancing through the

rebalance_add_liquidity_by_fix_coin function.

10/18

4 Findings

POS-1 The Current Price Range Check is Incorrect

Severity: Major

Status: Fixed

Code Location:

kai-leverage/vendor/flowx-clmm/sources/position.move#593

Descriptions:

In the position.create_position_ticket() function, the protocol performs a check to ensure

the current price is within the range of the LP position.

 // assert that the current price is within the range of the LP position// assert that the current price is within the range of the LP position
 assertassert!!((tick_atick_a..gtegte((current_tickcurrent_tick)),, EInvalidTickRangeEInvalidTickRange));;
 assertassert!!((current_tickcurrent_tick..ltlt((tick_btick_b)),, EInvalidTickRangeEInvalidTickRange));;

However, there is an issue with this check; the current_tick should be greater than or equal

to tick_a .

Suggestion:

It is recommended to use assert!(current_tick.gte(tick_a), EInvalidTickRange) .

Resolution:

This issue has been fixed. The client has adopted our advice.

11/18

PYT-1 Getting the expo from pyth is Incorrect

Severity: Major

Status: Fixed

Code Location:

kai-leverage/vendor/pyth/sources/pyth.move#105

Descriptions:

In the pyth.get_price_lo_hi_expo_dec() function, the protocol calls

i64::get_magnitude_if_positive(&price.get_expo()) to get the expo.

 fun fun get_price_lo_hi_expo_decget_price_lo_hi_expo_dec((
 price_infoprice_info:: &&ValidatedPythPriceInfoValidatedPythPriceInfo,, tt:: TypeNameTypeName
)):: ((u64u64,, u64 u64,, u64 u64,, u64 u64,, u64 u64)) {{
 letlet price price == get_priceget_price((price_infoprice_info,, t t));;

 letlet conf conf == price price..get_confget_conf(());;
 letlet p p == i64 i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&priceprice..get_priceget_price(())));;
 letlet expo expo == i64 i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&priceprice..get_expoget_expo(())));;
 letlet dec dec == decimalsdecimals((tt)) asas u64 u64;;

 ((pp,, p p -- conf conf,, p p ++ conf conf,, expo expo,, dec dec))
 }}

However, in the Sui ecosystem, most tokens have a negative expo value.

https://pyth.network/price-feeds Therefore, get_magnitude_if_positive() will throw an error,

causing the program to fail.

Suggestion:

It is recommended to use to the following method to get the expo.

 letlet expo expo == ifif i64i64::::get_is_negativeget_is_negative((&&i64_expoi64_expo)) {{
 i64i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&i64_expoi64_expo))
 }} elseelse {{
 i64i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&i64_expoi64_expo))
 }};;

Resolution:

12/18

https://pyth.network/price-feeds

This issue has been fixed. The protocol now calls get_magnitude_if_negative() to retrieve the

exponent.

13/18

SPO-1 The Administrator will Receive fewer Shares than
Expected

Severity: Medium

Status: Fixed

Code Location:

kai-leverage/sources/supply_pool.move#402-407

Descriptions:

In the supply_pool.repay_flash_loan() function, if equity::join() is called after

share_registry.increase_value() , the shares obtained will be reduced. From the project

team's perspective, it is recommended to call equity::join() before

share_registry.increase_value() .

 letlet share_registry share_registry == pool pool..supply_equitysupply_equity..borrow_mut_registryborrow_mut_registry(());;
 share_registryshare_registry..increase_valueincrease_value((repay_amt repay_amt -- interest_fee interest_fee));;
 equityequity::::joinjoin((
 &&mut poolmut pool..collected_feescollected_fees,,
 share_registryshare_registry..increase_value_and_issueincrease_value_and_issue((interest_feeinterest_fee))
));;
 poolpool..available_balanceavailable_balance..joinjoin((balancebalance));;

If registry.underlying_value_x64 and registry.supply_x64 are both 100, and a user borrows

100 with an interest rate of 10%, the interest is 100 * 10% = 10. If interest_fee_bps is 50%,

the interest_fee is 5. In the current implementation, the final underlying_value is 100 + 10

= 110, and supply is 100 + 5 * 100 / 105 = 104.7. If equity::join() is called before

share_registry.increase_value() , the administrator can get shares = 5 * 100 / 100 = 5

shares.

Suggestion:

It is recommended to call the equity::join() function before calling

share_registry.increase_value() .

Resolution:

14/18

This issue has been fixed. The protocol has updated the value of

share_registry.increase_value() to interest - interest_fee .

15/18

POS1-1 Create Position Fails

Severity: Major

Status: Fixed

Code Location:

kai-leverage/sources/clmm/position.move#642-778

Descriptions:

If the user executes borrow_for_position_x or borrow_for_position_y after creating a

position ticket, in borrow_for_position_x , the user borrows an amount of ticket.dx into

borrowed_x and then sets ticket.dx to 0:

letlet ((balancebalance,, shares shares)) == supply_pool supply_pool..borrowborrow((&&configconfig..lend_facil_caplend_facil_cap,, ticket ticket..dydy,, $clock$clock));;
ticketticket..borrowed_yborrowed_y..joinjoin((balancebalance));;
ticketticket..dy dy == 00;;

Then the creation of the position will fail because of the following checks:

assert!assert!((ticketticket..borrowed_xborrowed_x..valuevalue(()) ==== ticket ticket..dxdx,, EInvalidBorrowEInvalidBorrow));;
assert!assert!((ticketticket..borrowed_yborrowed_y..valuevalue(()) ==== ticket ticket..dydy,, EInvalidBorrowEInvalidBorrow));;

Suggestion:

It is recommended to modify the appeal logic to resolve the issue.

Resolution:

This issue has been fixed. The client has modified the appeal logic to resolve the issue.

16/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

17/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

18/18

	485_page1.pdf
	485_page2.pdf

