
Sui-AMM-swap
Contracts
AuditReport

contact@movebit.xyz

https://twitter.com/movebit_

1

Sui-AMM-swap Contracts Audit Report

1 Executive Summary

1.1 Project Information

1.2 Issue Statistic

Type DEX

Auditors MoveBit

Timeline 2022-11-16 to 2022-11-30

Languages Move

Methods Architecture Review, Unit Testing, Manual Review

Source Code Repository: https://github.com/OmniBTC/Sui-AMM-swap

Received Commit: 084836dd4c523a85b2d33baa3c4796a1b15fd87

Last Reviewed Commit: fa450398976c15e2e7b9b0e56156274188bfd6dd

Updates Fixed issue 6.6 on February 21, 2023,

Commit: 0de3574e471b8cc13b36b2184c4fa7d0747ff24f

Item Count Fixed Pending

Total 7 7

Minor

Medium 6 6

https://github.com/OmniBTC/Sui-AMM-swap

2

Minor issues are general suggestions relevant to best practices and readability. They don't

post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They should be

fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive information at

risk, and often are not directly exploitable. All major issues should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Fixed: The issue has been resolved.

Pending: The issue has been acknowledged by the code owner, but has not yet been

resolved. The code owner may take action to fix it in the future.

The first open source AMM swap on the Sui. Our team mainly focused on reviewing the Code

Security and normative, then conducted code running tests and business logic security tests on

the test net, Our team has been in close contact with the developing team for the past few days.

As a result, Our team found a total of 7 issues. The team discussed these issues together, and

the development team has fixed these 7 issues.

1.3 Issue Level
●

●

●

●

1.4 Issue Status
●

●

2 Summary of Findings

3 Participant Process

Major 1 1

Critical

3

Here  are  the  relevant  actors  with   their  respective  abilities within the  Sui-AMM-swap Smart 
Contract ：

(1) Admin

Admin can transfer withdraw fee coins to the beneficiary.

Admin can pause all pools under the global.

Admin can resume all pools under the global.

(2) User

User can add liquidity.

User can remove liquidity.

User can swap tokens.

User can multi-add liquidity.

User can multi-remove liquidity.

User can multi-swap.

●

●

●

●

●

●

●

●

●

swap::beneficiary

Admin

withdraw()

swap::controller

pause()

resume()

4

MoveBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are not

limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Denial of service / logical oversights

4 MoveBit Audit BreakDown

●

●

●

●

●

User

add_liquidity()

swap::interface

remove_liquidity()

swap()

multi_swap()

multi_remove_liquidity()

multi_add_liquidity()

5

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way

that is closest to the real attack. The main entrance and scope of security testing are

stated in the conventions in the "Audit Objective", and that can expand to contexts beyond

the scope according to the actual testing needs. The main types of this security audit

include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

Code scope sees Appendix 1.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner in

time. The code owners should actively cooperate (this might include providing the latest

●

●

●

●

●

●

●

●

●

5 Methodology

●

●

6

stable source code, relevant deployment scripts or methods, transaction signature scripts,

exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both the

audit team and the code owner in a timely manner.

Severity: Medium

Status: Fixed

Descriptions: In the function swap_out() , it is necessary to check whether the product of the

token quantity of the token pair after the exchange is strictly greater than or equal to the K
value. However, since there is a handling fee in the swap process, the product of the number of

tokens in the swapped token pair should be greater than the previous K value.

Code Location: sources/implements.move, line 302.

●

6 Findings

6.1 Missing check K value after swap

7

public(friend) fun swap_out<X, Y>(
 global: &mut Global,
 coin_in: Coin<X>,
 coin_out_min: u64,
 ctx: &mut TxContext
): vector<u64> {
 assert!(coin::value<X>(&coin_in) > 0, ERR_ZERO_AMOUNT);

 if (is_order<X, Y>()) {
 let pool = get_mut_pool<X, Y>(global);
 let (coin_x_reserve, coin_y_reserve, _lp) = get_reserves_size(
pool);
 assert!(coin_x_reserve > 0 && coin_y_reserve > 0, ERR_RESERVES
_EMPTY);
 let coin_x_in = coin::value(&coin_in);

 let coin_x_fee = get_fee_to_fundation(coin_x_in);
 let coin_y_out = get_amount_out(
 coin_x_in,
 coin_x_reserve,
 coin_y_reserve,
);
 assert!(
 coin_y_out >= coin_out_min,
 ERR_COIN_OUT_NUM_LESS_THAN_EXPECTED_MINIMUM
);

 let coin_x_balance = coin::into_balance(coin_in);
 balance::join(&mut pool.fee_coin_x, balance::split(&mut coin_x
_balance, coin_x_fee));
 balance::join(&mut pool.coin_x, coin_x_balance);
 let coin_out = coin::take(&mut pool.coin_y, coin_y_out, ctx);
 transfer::transfer(coin_out, tx_context::sender(ctx));

 let return_values = vector::empty<u64>();
 vector::push_back(&mut return_values, coin_x_in);
 vector::push_back(&mut return_values, 0);
 vector::push_back(&mut return_values, 0);
 vector::push_back(&mut return_values, coin_y_out);
 return_values
 } else {

 }
 }

1
2
3
4
5
6
7
8
9
10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

implements.move

8

Suggestion: It is recommended to add an assert! for pool.coin_x * pool.coin_y > co
in_x_reserve * coin_y_reserve .

public(friend) fun swap_out<X, Y>(
 global: &mut Global,
 coin_in: Coin<X>,
 coin_out_min: u64,
 ctx: &mut TxContext
): vector<u64> {
 assert!(coin::value<X>(&coin_in) > 0, ERR_ZERO_AMOUNT);

 if (is_order<X, Y>()) {

 let (new_reserve_x, new_reserve_y, _lp) = get_reserves_size(pool);
 assert!(
 (coin_x_reserve as u128) * (coin_y_reserve as u128)
 < (new_reserve_x as u128) * (new_reserve_y as u128),
 14
)

 let return_values = vector::empty<u64>();
 vector::push_back(&mut return_values, coin_x_in);
 vector::push_back(&mut return_values, 0);
 vector::push_back(&mut return_values, 0);
 vector::push_back(&mut return_values, coin_y_out);
 return_values
 } else {

 let (new_reserve_x, new_reserve_y, _lp) = get_reserves_size(pool);
 assert!(
 (coin_x_reserve as u128) * (coin_y_reserve as u128)
 < (new_reserve_x as u128) * (new_reserve_y as u128),
 14
)

 let return_values = vector::empty<u64>();
 vector::push_back(&mut return_values, 0);
 vector::push_back(&mut return_values, coin_x_out);
 vector::push_back(&mut return_values, coin_y_in);
 vector::push_back(&mut return_values, 0);
 return_values
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

implements.move

9

Severity: Medium

Status: Fixed

Descriptions: In the function add_liquidity() , if it is the first injection of liquidity, the

number of lp tokens obtained will be subtracted from the minimum liquidity value (MINIMAL_
LIQUIDITY). The function of MINIMAL_LIQUIDITY is to limit the lower limit of lp supply,

thereby reducing the unit price of lp token and increasing the attack cost of lp price

manipulation.

This value is directly subtracted in the code, so the value of lp_supply does not increase,

and this part should be mint and stored in an address instead of being directly subtracted.

Code Location: sources/implements.move, line 234.

Suggestion: Call balance::increase_supply to increase the total amount of lp_supply
and transfer it to @controller address.

6.2 There is no minting of minimum liquidity, resulting in

reduced attack costs

let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(optimal_coin_x) * math::sqrt(optimal_coin_
y);
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);
 initial_liq - MINIMAL_LIQUIDITY
} else {

};

1
2

3
4
5
6
7
8

implements.move

10

Severity: Medium

Status: Fixed

Descriptions: The functions multi_add_liquidity , multi_remove_liquidity , and mul
ti_swap first use the pop_back function for coins_in and lp_coin in the code to pop

up the last element of the vector , but this does not judge that the length of the vector is

0.

Code Location: sources/interface.move, line 139 and line 190 and line 209.

6.3 Multi related functions do not limit the empty Vector

let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(optimal_coin_x) * math::sqrt(optimal_coin
_y);
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);

 let minimal_liquidity_balance = balance::increase_supply(&mut pool.lp_
supply, MINIMAL_LIQUIDITY);
 let minimal_liquidity_coin = coin::from_balance(minimal_liquidity_bala
nce, ctx);
 transfer::transfer(minimal_liquidity_coin, @controller);

 initial_liq - MINIMAL_LIQUIDITY

} else {

};

1
2

3
4
5

6

7
8
9
10
11
12
13
14

implements.move

11

Suggestion: Add an assert to limit the length of the vector to be greater than 0.

public entry fun multi_add_liquidity<X, Y>(
 global: &mut Global,
 coins_x: vector<Coin<X>>,
 coins_x_value: u64,
 coin_x_min: u64,
 coins_y: vector<Coin<Y>>,
 coins_y_value: u64,
 coin_y_min: u64,
 ctx: &mut TxContext
) {
 assert!(!implements::is_emergency(global), ERR_EMERGENCY);

// 1. merge coins
let merged_coin_x = vector::pop_back(&mut coins_x);
......
 let merged_coin_y = vector::pop_back(&mut coins_y);

......
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

interface.move

12

Severity: Medium

Status: Fixed

Descriptions: The visibility of emit functions in the project is public, so anyone can call these

functions to emit events. If hacker directly calls the emit function, he can pretend that he has

successfully called add_liquidity/remove_liquidity/swap , which may cause logic errors

in other code.

Code Location: sources/event.move.

6.4 Wrong event access permission

public entry fun multi_add_liquidity<X, Y>(
 global: &mut Global,
 coins_x: vector<Coin<X>>,
 coins_x_value: u64,
 coin_x_min: u64,
 coins_y: vector<Coin<Y>>,
 coins_y_value: u64,
 coin_y_min: u64,
 ctx: &mut TxContext
) {
 assert!(!implements::is_emergency(global), ERR_EMERGENCY);
assert!(
 !vector::is_empty(&coins_x) && !vector::is_empty(&coins_y),
 105
);

// 1. merge coins
let merged_coin_x = vector::pop_back(&mut coins_x);
......
 let merged_coin_y = vector::pop_back(&mut coins_y);

......
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

interface.move

13

Suggestion: Use friend to limit the call permission of the function.

6.5 Sqrt function precision error

public fun added_event(
 global: ID,
 lp_name: String,
 coin_x_val: u64,
 coin_y_val: u64,
 lp_val: u64
) {
 emit(
 AddedEvent {
 global,
 lp_name,
 coin_x_val,
 coin_y_val,
 lp_val
 }
)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

event.move

public(friend) fun added_event(
 global: ID,
 lp_name: String,
 coin_x_val: u64,
 coin_y_val: u64,
 lp_val: u64
) {
 emit(
 AddedEvent {
 global,
 lp_name,
 coin_x_val,
 coin_y_val,
 lp_val
 }
)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

event.move

14

Severity: Medium

Status: Fixed

Descriptions: In the function add_liquidity() , When injecting liquidity for the first time, the

number of lp tokens obtained should be the square root of the multiplication of the two

injected tokens, but the calculation method in the code is based on the method of first extracting

the square and then multiplying, which may cause accuracy problems.

Code Location: sources/implements.move, line 232.

Suggestion: Use the sqrt function with a higher number of digits and multiply first and then

square root.

public(friend) fun add_liquidity<X, Y>(
 pool: &mut Pool<X, Y>,
 coin_x: Coin<X>,
 coin_x_min: u64,
 coin_y: Coin<Y>,
 coin_y_min: u64,
 ctx: &mut TxContext
): (Coin<LP<X, Y>>, vector<u64>) {

 let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(optimal_coin_x) * math::sqrt(optimal_
coin_y);
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);
 initial_liq - MINIMAL_LIQUIDITY
 } else {

 };

}

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20

implements.move

15

Severity: Medium

Status: Fixed

Descriptions: At present, the @controller address has great authority and can control the

status of the entire contract. In order to ensure asset security, it is recommended to add an

interface to support changing the @controller . When SUI supports multi-signature accounts

in the future, the community can easily change @controller to a multi-signature account, and

make the contract to be much safer.

Suggestion: Add the following codes in controller.move and implements.move
respectively.

6.6 Add an interface to modify the controller as a multi-

signature account

public(friend) fun add_liquidity<X, Y>(
 pool: &mut Pool<X, Y>,
 coin_x: Coin<X>,
 coin_x_min: u64,
 coin_y: Coin<Y>,
 coin_y_min: u64,
 ctx: &mut TxContext
): (Coin<LP<X, Y>>, vector<u64>) {

 let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(math::mul_to_u128(optimal_coin_x, opt
imal_coin_y));
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);
 initial_liq - MINIMAL_LIQUIDITY
 } else {

 };

}

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20

implements.move

16

Severity: Major

Status: Fixed

Descriptions: In the function add_liquidity , a zero check is missing for the

provided_liq . If a user does not provide enough coins<X> and coins<Y> to add

liquidity, the user will lose coins<X> and coins<Y> assets, and receive no Coin<LP<X, Y>
> token.

Code Location: sources/implements.move, line 203.

6.7 Missing zero check for added liquidity

public entry fun modify_controller(global: &mut Global, new_controller: add
ress,
 ctx: &mut TxContext) {
 assert!(implements::controller(global) == tx_context::sender(ctx),
ERR_NO_PERMISSIONS);
 implements::modify_controller(global, new_controller)
 }
}

1

2
3

4
5
6

controller.move

public(friend) fun modify_controller(global: &mut Global, new_controller: a
ddress) {
 global.controller = new_controller
}

1

2
3

implements.move

17

Suggestion: Add an assert! on provided_liq , if it is equal to zero, aborts the transaction.

public(friend) fun add_liquidity<X, Y>(
 pool: &mut Pool<X, Y>,
 coin_x: Coin<X>,
 coin_x_min: u64,
 coin_y: Coin<Y>,
 coin_y_min: u64,
 ctx: &mut TxContext
): (Coin<LP<X, Y>>, vector<u64>) {

 let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(optimal_coin_x) * math::sqrt(optimal_
coin_y);
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);
 initial_liq - MINIMAL_LIQUIDITY
 } else {
 let x_liq = (lp_supply as u128) * (optimal_coin_x as u128) / (coin
_x_reserve as u128);
 let y_liq = (lp_supply as u128) * (optimal_coin_y as u128) / (coin
_y_reserve as u128);
 if (x_liq < y_liq) {
 assert!(x_liq < (U64_MAX as u128), ERR_U64_OVERFLOW);
 (x_liq as u64)
 } else {
 assert!(y_liq < (U64_MAX as u128), ERR_U64_OVERFLOW);
 (y_liq as u64)
 }
 };

}

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16

17

18
19
20
21
22
23
24
25
26
27
28

implements.move

18

The following are the SHA1 hashes of the last reviewed files.

Appendix 1 - Files in Scope

public(friend) fun add_liquidity<X, Y>(
 pool: &mut Pool<X, Y>,
 coin_x: Coin<X>,
 coin_x_min: u64,
 coin_y: Coin<Y>,
 coin_y_min: u64,
 ctx: &mut TxContext
): (Coin<LP<X, Y>>, vector<u64>) {

 let provided_liq = if (0 == lp_supply) {
 let initial_liq = math::sqrt(optimal_coin_x) * math::sqrt(optimal_
coin_y);
 assert!(initial_liq > MINIMAL_LIQUIDITY, ERR_LIQUID_NOT_ENOUGH);
 initial_liq - MINIMAL_LIQUIDITY
 } else {
 let x_liq = (lp_supply as u128) * (optimal_coin_x as u128) / (coin
_x_reserve as u128);
 let y_liq = (lp_supply as u128) * (optimal_coin_y as u128) / (coin
_y_reserve as u128);
 if (x_liq < y_liq) {
 assert!(x_liq < (U64_MAX as u128), ERR_U64_OVERFLOW);
 (x_liq as u64)
 } else {
 assert!(y_liq < (U64_MAX as u128), ERR_U64_OVERFLOW);
 (y_liq as u64)
 }
 };

 const ERR_INSUFFICIENT_LIQUIDITY_MINTED: u64 = 15;
 assert!(provided_liq > 0, ERR_INSUFFICIENT_LIQUIDITY_MINTED);

}

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30

implements.move

Files SHA-1 Hash

19

This report is based on the scope of materials and documents provided, with a limited review at

the time provided. Results may not be complete and do not include all vulnerabilities. The review

and this report are provided on an as-is, where-is, and as-available basis. You agree that your

access and/or use, including but not limited to any associated services, products, protocols,

platforms, content, and materials, will be at your own risk. A report does not imply an

endorsement of any particular project or team, nor does it guarantee its security. These reports

should not be relied upon in any way by any third party, including for the purpose of making any

decision to buy or sell products, services, or any other assets. TO THE FULLEST EXTENT

PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS, AND

YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

Appendix 2 - Disclaimer

sources/beneficiary.move c9d1bf9fc31509769d1d588cdb51e0050bcfa8f7

sources/interface.move 05f71edc29f6cb922803950a0bdd10d9b9ae75fa

sources/math.move 0d02552fee51c3c1cc2e832f32171308f956daa2

sources/comparator.move 8caaaec2267d7c05fa6367dcf9444c09e091095e

sources/event.move b858c7f036a09716b04ee1e35c89afc947b12442

sources/controller.move a14fd0bcb4c9c5e10a968e4e678c892065da46ae

sources/implements.move b2bd6b7659901ea8584dea697d1ce34195c57993

Move.toml 32de0edb470e80bba7f9a325e33a573a98af5bc0

test_coins/sources/faucet.move ba396cd810b6633f6f4cd2d4b06e79bea3ba6a2d

test_coins/sources/coins.move e2d45a15a50d59c3a4d96ffa15332e2f2e5ec254

test_coins/Move.toml 94ed29619e4798080912809aba9185b5d29ea7b6

https://twitter.com/movebit_

contact@movebit.xyz

