
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Enjoyoors

Fri Feb 21 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Enjoyoors Audit Report

1 Executive Summary

1.1 Project Information

Description Staking / restaking protocol
WithdrawalApprover:
0x90cfa37214f0764ec6b5e70f2d088927b4b59be49333ceae0e9
0587e544df4ff
Vault:
0x4e4c16d833abe593b81ebffb232e0798876b848fb2b55afef78
7c94db122edd4

Type DeFi

Auditors MoveBit

Timeline Sat Feb 08 2025 - Fri Feb 21 2025

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/eq-lab/enjoyoors-sui-contracts

Commits 41f851e9e49c2760655a4bdfc7f91b9d770c2fd1
cea36acfb825589ab38ff594ce9032f350f409a2

1/15

https://github.com/eq-lab/enjoyoors-sui-contracts
https://github.com/eq-lab/enjoyoors-sui-contracts/tree/41f851e9e49c2760655a4bdfc7f91b9d770c2fd1
https://github.com/eq-lab/enjoyoors-sui-contracts/tree/cea36acfb825589ab38ff594ce9032f350f409a2

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV contracts/enjoyoors-vault/Move.to
ml

5a062b323e1d2a7349158253d445
b201ec66ab3e

EVA contracts/enjoyoors-vault/sources/
enjoyoors_vault.move

3f1f4224f7d5616c3b3763fc5e93e9
41b1ba2e84

CEWAMT contracts/enjoyoors-withdrawal-ap
prover/Move.toml

a68982f2a60be3545c49e7c1dab1f
304c6f58b60

EWA contracts/enjoyoors-withdrawal-ap
prover/sources/enjoyoors_withdra
wal_approver.move

4ee79d5c59fa55fb0a108868b78cf
8c3563974d7

2/15

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 3 0

Informational 1 1 0

Minor 1 1 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/15

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/15

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/15

2 Summary

This report has been commissioned by Enjoyoors to identify any potential issues and
vulnerabilities in the source code of the Enjoyoors smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

EVA-1 Missing Event for Role Removal in
grant_role Function

Minor Fixed

EVA-2 Ensure delta > 0 in Supply Limit
Modifications

Informational Fixed

EWA-1 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

6/15

3 Participant Process

Here are the relevant actors with their respective abilities within the Enjoyoors Smart
Contract :
Admin

grant_role : Assigns a specific role to an address.

add_coin : Adds a new coin to the vault and initializes its deposit storage.

change_approval_table_id : Updates the approval table ID for withdrawals.

change_min_deposit : Modifies the minimum deposit amount for a specific coin.

increase_supply_limit : Increases the supply limit of a specific coin.

decrease_supply_limit : Decreases the supply limit of a specific coin.

pause_deposit : Pauses deposits for a specific coin.

pause_withdrawal : Pauses withdrawals for a specific coin.

pause_claim : Pauses claims for a specific coin.

resume_deposit : Resumes deposits for a specific coin.

resume_withdrawal : Resumes withdrawals for a specific coin.

resume_claim : Resumes claims for a specific coin.

change_withdrawal_period : Updates the withdrawal approval period.

transfer_admin : Current admin designates a new pending admin address.

cancel_admin_transfer : Cancels an ongoing admin rights transfer process.

accept_admin : Pending admin accepts the admin role.

User

deposit : Deposits coins into the vault.

request_withdrawal : Requests a withdrawal of a specific amount of coins.

finalize_withdrawal : Completes a withdrawal after approval.

claim_withdrawal : Approves and finalizes a withdrawal request after the waiting

period.

7/15

8/15

4 Findings

EVA-1 Missing Event for Role Removal in grant_role Function

Severity: Minor

Status: Fixed

Code Location:

contracts/enjoyoors-vault/sources/enjoyoors_vault.move#383

Descriptions:

 publicpublic fun fun grant_rolegrant_role((configconfig:: &&mut mut VaultConfigVaultConfig,, rolerole:: u8 u8,, toto:: address address,, ctxctx:: &&mut mut
TxContextTxContext)) {{
 only_roleonly_role((configconfig,, ADMIN_ROLEADMIN_ROLE,, ctx ctx..sendersender(())));;
 assertassert!!((role role << ROLES_COUNTROLES_COUNT,, EInvalidRoleIdEInvalidRoleId));;

 letlet actual actual == config config..rolesroles..try_gettry_get((&&rolerole));;

 ifif ((actualactual..is_someis_some(()))) {{
 configconfig..rolesroles..removeremove((&&rolerole));;
 }};;

 configconfig..rolesroles..insertinsert((rolerole,, to to));;

 eventevent::::emitemit((RoleGrantedRoleGranted {{
 rolerole:: role role,,
 accountaccount:: to to,,
 sendersender:: ctx ctx..sendersender(()),,
 }}));;
 }}

In the grant_role function, when assigning a new role, the existing role is first removed

before the new assignment takes place. However, there is no event emitted to indicate that a

role was removed. This lack of logging can make it difficult to track role changes.

Suggestion:

Emit a RoleRevoked event before removing the existing role.

Resolution:

9/15

This issue has been fixed. The client has adopted our suggestions.

10/15

EVA-2 Ensure delta > 0 in Supply Limit Modifications

Severity: Informational

Status: Fixed

Code Location:

contracts/enjoyoors-vault/sources/enjoyoors_vault.move#472,489

Descriptions:

 publicpublic fun fun increase_supply_limitincrease_supply_limit((
 configconfig:: &&mut mut VaultConfigVaultConfig,,
 coin_metadata_idcoin_metadata_id:: IDID,,
 deltadelta:: u64 u64,,
 ctxctx:: &&mut mut TxContextTxContext
)) {{
 only_roleonly_role((configconfig,, SETUP_ROLESETUP_ROLE,, ctx ctx..sendersender(())));;

 letlet coin_config coin_config == config config..coinscoins..borrow_mutborrow_mut((coin_metadata_idcoin_metadata_id));;
 coin_configcoin_config..supply_till_limitsupply_till_limit == coin_config coin_config..supply_till_limitsupply_till_limit ++ delta delta;;

 eventevent::::emitemit((SupplyLimitIncreasedSupplyLimitIncreased {{
 coin_metadata_idcoin_metadata_id:: coin_metadata_id coin_metadata_id,,
 deltadelta:: delta delta,,
 }}))
 }}

 publicpublic fun fun decrease_supply_limitdecrease_supply_limit((
 configconfig:: &&mut mut VaultConfigVaultConfig,,
 coin_metadata_idcoin_metadata_id:: IDID,,
 deltadelta:: u64 u64,,
 ctxctx:: &&mut mut TxContextTxContext
)) {{
 only_roleonly_role((configconfig,, SETUP_ROLESETUP_ROLE,, ctx ctx..sendersender(())));;
 letlet coin_config coin_config == config config..coinscoins..borrow_mutborrow_mut((coin_metadata_idcoin_metadata_id));;
 assertassert!!((coin_configcoin_config..supply_till_limitsupply_till_limit >=>= delta delta,, ESupplyLimitDecreaseFailedESupplyLimitDecreaseFailed));;
 coin_configcoin_config..supply_till_limitsupply_till_limit == coin_config coin_config..supply_till_limitsupply_till_limit -- delta delta;;

 eventevent::::emitemit((SupplyLimitDecreasedSupplyLimitDecreased {{
 coin_metadata_idcoin_metadata_id:: coin_metadata_id coin_metadata_id,,
 deltadelta:: delta delta,,

11/15

 }}))
 }}

In the functions increase_supply_limit and decrease_supply_limit , the parameter delta

represents the amount by which the supply limit is adjusted. However, there is no validation

to ensure that delta > 0.

Suggestion:

Add an assertion to ensure that delta > 0, ensuring meaningful updates.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/15

EWA-1 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

contracts/enjoyoors-withdrawal-

approver/sources/enjoyoors_withdrawal_approver.move#122;

contracts/enjoyoors-vault/sources/enjoyoors_vault.move#376

Descriptions:

The change_admin() and grant_role function has a problem with single-step ownership

permission transfer.

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract.

Suggestion:

It is recommended to adopt a two-step administrator transfer process:

Nomination: The current administrator nominates the new administrator.

Acceptance: The transfer is officially completed once the nominated address accepts

the administrator role.

By requiring the new administrator to explicitly accept the role, the risk of unintended or

mistaken transfers is minimized.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/15

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

14/15

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

15/15

	746_page1.pdf
	746_page2.pdf

