
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Tokenlabs

Wed Jan 14 2026

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Tokenlabs Audit Report

1 Executive Summary

1.1 Project Information

Description The TokenLabs contract is a staking protocol on the IOTA
ecosystem. It allows users to stake tokens into the protocol,
minting cert tokens proportionally as proof of stake. Users
can then redeem their staked assets and corresponding
rewards by using the cert tokens to unstake. TokenLabs
enables users to select specific validators or opt for a default
validator set, with all staked tokens being periodically
allocated to the designated validators based on the staking
cycle.

Type DeFi

Auditors jolyon, s3cunda

Timeline Mon Jan 12 2026 - Wed Jan 14 2026

Languages Move

Platform IOTA

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Tokenlabs-LLC/LST

Commits 9973d19b248be3fe96f6116655214fe75d49fe14
a7a27c7c08f3aa179cceedb4ecef544c8904ebc4

1/18

https://github.com/Tokenlabs-LLC/LST
https://github.com/Tokenlabs-LLC/LST/tree/9973d19b248be3fe96f6116655214fe75d49fe14
https://github.com/Tokenlabs-LLC/LST/tree/a7a27c7c08f3aa179cceedb4ecef544c8904ebc4

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV liquid_staking_v2/Move.toml 3eec117529a8054d08bf9e805a626
cc0671b3348

NPO liquid_staking_v2/sources/native_p
ool.move

9b41caa60ea8b35aa1d64a190e4c
b1fcfc8d610b

MAT liquid_staking_v2/sources/math.mo
ve

3e33786530bea0bf2e11214a2a5ec
ed6078faebd

VSE liquid_staking_v2/sources/validator
_set.move

b4fa924b341725064cf6fe61f56682
21ebcfc8ce

OWN liquid_staking_v2/sources/ownershi
p.move

28f5ca4a61c6a53856a734c0c4e3d
ed3462936fc

CER liquid_staking_v2/sources/cert.mov
e

85e70afef62620f63ffa833c39b715
d0ba357e4b

2/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 6 0

Critical 0 0 0

Major 0 0 0

Medium 2 2 0

Minor 3 3 0

Informational 1 1 0

3/18

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/18

2 Summary

This report has been commissioned by Tokenlabs to identify any potential issues and
vulnerabilities in the source code of the Tokenlabs smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

MAT-4 Minimum Share Minting with
Asymmetric Rounding May Inflate
Share Supply

Medium Fixed

NPO-1 Missing Events for State Changes Minor Fixed

NPO-2 Missing Version Checks in Added
Entry Functions

Minor Fixed

NPO-3 Missing Zero-Value Check in
add_pending

Informational Fixed

NPO-7 Missing update function on
collectable_fee

Medium Fixed

VSE-5 Incorrect Upper Bound Check for
Validator Updates

Minor Fixed

6/18

3 Participant Process

Here are the relevant actors with their respective abilities within the Tokenlabs Smart
Contract :

Admin

change_min_stake - Update minimum amount of stake.

change_base_reward_fee - Update base_reward_fee variable.

change_max_validator_stake_per_epoch - Update maximum stake amount per epoch

for each validator.

update_validators - Update validator set and corresponding priorities.

update_rewards_threshold - Update rewards_threshold variable.

update_rewards_revert - Update total_rewards and collected_rewards value.

update_rewards - Update total_rewards , rewards_update_ts and

collected_rewards value.

add_pending - Deposit IOTA into pending.

collect_fee_new - Collect protocol fees.

set_pause - Pause/unpause the protocol.

migrate - Migrate the protocol.

User

stake - Stake IOTA into protocol distribute to all validators and get CERT .

stake_to_validators - Stake IOTA into protocol distribute to specific validators and

get CERT .

unstake - Burn CERT then get IOTA .

7/18

rebalance - Move staked IOTA from bad validators into other validators.

8/18

4 Findings

MAT-4 Minimum Share Minting with Asymmetric Rounding
May Inflate Share Supply

Severity: Medium

Status: Fixed

Code Location:

liquid_staking_v2/sources/math.move#40

Descriptions:

The to_shares function enforces minting at least one share whenever amount > 0 , even

when integer division would normally result in zero:

sources/math.move

 /// Convert IOTA to tIOTA shares/// Convert IOTA to tIOTA shares
 publicpublic fun fun to_sharesto_shares((ratioratio:: u256 u256,, amountamount:: u64 u64)):: u64 u64 {{
 letlet mut shares mut shares == ((((amount amount asas u256 u256)) ** ratio ratio)) // RATIO_MAXRATIO_MAX;;
 assertassert!!((shares shares <=<= ((U64_MAXU64_MAX asas u256 u256)),, E_U64_OVERFLOWE_U64_OVERFLOW));;

 // Ensure at least 1 share if amount > 0// Ensure at least 1 share if amount > 0
 ifif ((amount amount >> 00 &&&& shares shares ==== 00)) {{
 shares shares == 11;;
 }};;

 ((shares shares asas u64 u64))
 }}

This results in unsafe upward rounding when minting shares.

Suggestion:

It is recommended to reject deposits that are too small to mint at least one share, avoiding

upward rounding at the math layer.

9/18

Resolution:

The team adopted our advice and fixed the issue by removing the forced minimum-share

minting logic and instead rejecting deposits that are too small to mint at least one share,

which can be found at commit 8aaca7a1b6f5a5fbf4b5e2c5786a2771cc25e755.

10/18

NPO-1 Missing Events for State Changes

Severity: Minor

Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#1

Descriptions:

In the native_pool module, several functions modify critical protocol states or trigger

significant asset movements but do not emit corresponding events.

e.g. update_validators ， update_rewards_revert ， update_rewards ， rebalance

Suggestion:

It is recommended to event logging after a critical operational status change.

Resolution:

The team adopted our advice and fixed the issue by adding event emissions for critical state

changes, which can be found at commit f457cc87c5e8566122072ef2e6d31b952176a6f5.

11/18

NPO-2 Missing Version Checks in Added Entry Functions

Severity: Minor

Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#253，430，666

Descriptions:

Several entry functions that mutate NativePool state do not enforce the module’s version

check mechanism. Specifically, the following functions can be executed without validating

version:

update_rewards_revert

add_pending

set_pause

Suggestion:

It is recommended to add a version check at the beginning of all state-mutating entry and

public functions.

Resolution:

The team adopted our advice and fixed the issue by add a version check at the beginning of

all state-mutating entry and public functions, which can be found at commit

f457cc87c5e8566122072ef2e6d31b952176a6f5.

12/18

NPO-3 Missing Zero-Value Check in add_pending

Severity: Informational

Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#430

Descriptions:

The add_pending entry function does not validate that the input coin has a non-zero

balance. As a result, zero-value Coin objects can be passed into the function and processed

and emits a PendingValueAddedEvent .

sources/native_pool.move

 publicpublic entry fun entry fun add_pendingadd_pending((selfself:: &&mut mut NativePoolNativePool,, coincoin:: CoinCoin<<IOTAIOTA>>,, _operator_cap_operator_cap::
&&OperatorCapOperatorCap)) {{
 letlet prev_value prev_value == balance balance::::valuevalue((&&selfself..pendingpending));;

 letlet coin_balance coin_balance == coin coin::::into_balanceinto_balance((coincoin));;
 balancebalance::::joinjoin((&&mut selfmut self..pendingpending,, coin_balance coin_balance));;

 eventevent::::emitemit((PendingValueAddedEventPendingValueAddedEvent {{
 prev_valueprev_value,,
 new_valuenew_value:: balance balance::::valuevalue((&&selfself..pendingpending)),,
 }}));;
 }}

Suggestion:

It is recommended to validate that the input coin balance is greater than zero before

merging it into the pending balance and emitting the corresponding event.

Resolution:

The team adopted our advice and fixed the issue by validate that the input coin balance,

which can be found at commit f457cc87c5e8566122072ef2e6d31b952176a6f5.

13/18

NPO-7 Missing update function on collectable_fee

Severity: Medium

Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move

Descriptions:

The collectable_fee variable is used in collect_fee_non_entry and, according to the code

logic, appears to be intended as the storage location for protocol fees. However, this

variable is only initialized to 0 and has no other mechanisms to update its value. As a result,

the collect_fee_non_entry function always withdraws the entire balance from

collected_rewards as rewards.

sources/native_pool.move

fun fun collect_fee_non_entrycollect_fee_non_entry((
 selfself:: &&mut mut NativePoolNativePool,,
 wrapperwrapper:: &&mut mut IotaSystemStateIotaSystemState,,
 ctxctx:: &&mut mut TxContextTxContext
)):: CoinCoin<<IOTAIOTA>> {{
 letlet available available == balance balance::::valuevalue((&&selfself..collectable_feecollectable_fee));;//<= always 0//<= always 0
 letlet mut fee_coin mut fee_coin == coin coin::::from_balancefrom_balance((balancebalance::::splitsplit((&&mut selfmut self..collectable_feecollectable_fee,,
availableavailable)),, ctx ctx));;

 // If buffer doesn't have enough, withdraw the rest from validators// If buffer doesn't have enough, withdraw the rest from validators
 ifif ((available available << self self..collected_rewardscollected_rewards)) {{//<= always true//<= always true
 letlet needed needed == self self..collected_rewardscollected_rewards -- available available;;//<= entire collected_rewards//<= entire collected_rewards
 letlet validators validators == validator_set validator_set::::get_validatorsget_validators((&&selfself..validator_setvalidator_set));;
 coincoin::::joinjoin((&&mut fee_coinmut fee_coin,, unstake_amount_from_validatorsunstake_amount_from_validators((selfself,, wrapper wrapper,, needed needed,,
validatorsvalidators,, ctx ctx))));;
 }};;

 // Update accounting// Update accounting
 selfself..collected_rewardscollected_rewards == self self..collected_rewardscollected_rewards -- coin coin::::valuevalue((&&fee_coinfee_coin));;

14/18

 fee_coinfee_coin
 }}

Suggestion:

It is recommended to redesign the update logic for this ambiguously defined variable.

Resolution:

The team has adopted our advice and fixed the issue by removing the unused

collectable_fee variable, which can be found at commit

f457cc87c5e8566122072ef2e6d31b952176a6f5.

15/18

VSE-5 Incorrect Upper Bound Check for Validator Updates

Severity: Minor

Status: Fixed

Code Location:

liquid_staking_v2/sources/validator_set.move#99

Descriptions:

The update_validators function enforces an upper bound on the number of validators

being updated:

sources/validator_set.move

 letlet len len == vector vector::::lengthlength((&&validatorsvalidators));;
 assertassert!!((len len << MAX_VLDRS_UPDATEMAX_VLDRS_UPDATE,, E_TOO_MANY_VLDRSE_TOO_MANY_VLDRS));;

This check rejects updates where len == MAX_VLDRS_UPDATE , even though the constant

name implies that updating up to MAX_VLDRS_UPDATE validators should be allowed. This

results in an off-by-one validation error that unnecessarily restricts valid inputs.

Suggestion:

It is recommended to allow the validator count to be less than or equal to the

MAX_VLDRS_UPDATE.

Resolution:

The team adopted our advice and fixed the issue by allow the validator count to be less than

or equal to the MAX_VLDRS_UPDATE, which can be found at commit

956ffb1c8a9677f2b5050ba10d627060fd787e5d.

16/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

17/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

18/18

	1086_page1.pdf
	1086_page2.pdf

