Tokenlabs
Audit Report

G MOVEBIT

contact@bitslab.xyz https://twitter.com/movebit_

Wed Jan 14 2026


https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Tokenlabs Audit Report

1 Executive Summary

1.1 Project Information

Description

Type

Auditors

Timeline

Languages

Platform

Methods

Source Code

Commits

The TokenlLabs contract is a staking protocol on the IOTA
ecosystem. It allows users to stake tokens into the protocol,
minting cert tokens proportionally as proof of stake. Users
can then redeem their staked assets and corresponding
rewards by using the cert tokens to unstake. TokenLabs
enables users to select specific validators or opt for a default
validator set, with all staked tokens being periodically
allocated to the designated validators based on the staking
cycle.

DeFi

jolyon, s3cunda

Mon Jan 12 2026 - Wed Jan 14 2026

Move

IOTA

Architecture Review, Unit Testing, Manual Review

https://github.com/Tokenlabs-LLC/LST

9973d19b248be3fe96f6116655214fe75d49fe14
a7a27c7c08f3aal179cceedb4ecef544c8904ebc4

1/18


https://github.com/Tokenlabs-LLC/LST
https://github.com/Tokenlabs-LLC/LST/tree/9973d19b248be3fe96f6116655214fe75d49fe14
https://github.com/Tokenlabs-LLC/LST/tree/a7a27c7c08f3aa179cceedb4ecef544c8904ebc4

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID

MOV

NPO

MAT

VSE

OWN

CER

File

liquid_staking_v2/Move.toml

liquid_staking_v2/sources/native_p
ool.move

liquid_staking_v2/sources/math.mo
ve

liquid_staking_v2/sources/validator
_set.move

liquid_staking_v2/sources/ownershi
p.move

liquid_staking_v2/sources/cert.mov
e

2/18

SHA-1 Hash

3eec117529a8054d08bf9e805a626
cc0671b3348

9b41caab0ea8b35aal1db64a190e4dc
b1fcfc8d610b

3e33786530bealbf2e11214a2a5ec
ed6078faebd

b4fa924b341725064cf6fe61f56682
21ebcfc8ce

28f5ca4a61c6a53856a734c0c4e3d
ed3462936fc

85e70afef62620f63ffa833c39b715
dOba357e4b



1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 6 6 0
Critical 0 0 0
Major 0 0 0
Medium 2 2 0
Minor 3 3 0

Informational 1 1 0

3/18



1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence

e Timestamp dependence

¢ Integer overflow/underflow by bit operations
e Number of rounding errors

e Denial of service / logical oversights

e Access control

e Centralization of power

e Business logic contradicting the specification
e Code clones, functionality duplication

e (Gasusage

e Arbitrary token minting

e Unchecked CALL Return Values

e The flow of capability

e Witness Type

4/18



1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process
e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both
the audit team and the code owner in a timely manner.

5/18



2 Summary

This report has been commissioned by Tokenlabs to identify any potential issues and
vulnerabilities in the source code of the Tokenlabs smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status
MAT-4 Minimum Share Minting with Medium Fixed
Asymmetric Rounding May Inflate
Share Supply
NPO-1 Missing Events for State Changes Minor Fixed
NPO-2 Missing Version Checks in Added Minor Fixed

Entry Functions

NPO-3 Missing Zero-Value Checkin Informational Fixed
add_pending
NPO-7 Missing update function on Medium Fixed

collectable_fee

VSE-5 Incorrect Upper Bound Check for Minor Fixed
Validator Updates

6/18



3 Participant Process

Here are the relevant actors with their respective abilities within the Tokenlabs Smart
Contract:

Admin

e change_min_stake - Update minimum amount of stake.

change_base_reward_fee -Update base_reward_fee variable.

e change_max_validator_stake_per_epoch -Update maximum stake amount per epoch

for each validator.
e update_validators - Update validator set and corresponding priorities.
e update_rewards_threshold - Update rewards_threshold variable.
e update_rewards_revert - Update total_rewards and collected_rewards value.

e update_rewards - Update total_rewards , rewards_update_ts and

collected_rewards value.
e add_pending - Deposit I0OTA into pending.
e collect_fee_new - Collect protocol fees.
e set_pause - Pause/unpause the protocol.

e migrate - Migrate the protocol.

User

o stake -Stake IOTA into protocol distribute to all validators and get CERT .

e stake_to_validators - Stake IOTA into protocol distribute to specific validators and
get CERT .

e unstake -Burn CERT thenget IOTA.

7/18



e rebalance - Move staked IOTA from bad validators into other validators.

8/18



4 Findings

MAT-4 Minimum Share Minting with Asymmetric Rounding
May Inflate Share Supply

Severity: Medium
Status: Fixed

Code Location:

liquid_staking_v2/sources/math.move#40

Descriptions:
The to_shares function enforces minting at least one share whenever amount >0 , even
when integer division would normally result in zero:

sources/math.move

public fun to_shares(ratio: u256, amount: u64): u64 {
let mut shares = ((amount as u256) * ratio) / RATIO_MAX;
assertl(shares <= (U64_MAX as u256), E_U64_OVERFLOW);

if @mount > 0 && shares == 0) {
shares = 1;

(shares as u64)

This results in unsafe upward rounding when minting shares.

Suggestion:
It is recommended to reject deposits that are too small to mint at least one share, avoiding

upward rounding at the math layer.

9/18



Resolution:

The team adopted our advice and fixed the issue by removing the forced minimum-share
minting logic and instead rejecting deposits that are too small to mint at least one share,

which can be found at commit 8aaca7a1b6f5a5fbf4b5e2c5786a2771cc25e755.

10/18



NPO-1 Missing Events for State Changes

Severity: Minor
Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#1

Descriptions:
In the native_pool module, several functions modify critical protocol states or trigger
significant asset movements but do not emit corresponding events.

e.g. update_validators update_rewards_revert update_rewards rebalance

Suggestion:

It is recommended to event logging after a critical operational status change.

Resolution:
The team adopted our advice and fixed the issue by adding event emissions for critical state

changes, which can be found at commit f457cc87c¢5e8566122072ef2e6d31b952176a6f5.

11/18



NPO-2 Missing Version Checks in Added Entry Functions

Severity: Minor
Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#253 430 666

Descriptions:
Several entry functions that mutate NativePool state do not enforce the module’s version
check mechanism. Specifically, the following functions can be executed without validating
version:

update_rewards_revert

add_pending

set_pause

Suggestion:
It is recommended to add a version check at the beginning of all state-mutating entry and

public functions.

Resolution:
The team adopted our advice and fixed the issue by add a version check at the beginning of
all state-mutating entry and public functions, which can be found at commit

f457cc87c5e8566122072ef2e6d31b952176a6f5.

12/18



NPO-3 Missing Zero-Value Check in add_pending

Severity: Informational
Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move#430

Descriptions:

The add_pending entry function does not validate that the input coin has a non-zero
balance. As a result, zero-value Coin objects can be passed into the function and processed
and emits a PendingValueAddedEvent .

sources/native_pool.move

public entry fun add_pending(self: &mut NativePool, coin: Coin<IOTA>, _operator_cap:
&OperatorCap) {
let prev_value = balance::value(&self.pending);

let coin_balance = coin::iinto_balance(coin);
balance:join(&mut self.pending, coin_balance);

event::emit(PendingValueAddedEvent {
prev_value,
new_value: balance::value(&self.pending),
D

Suggestion:
It is recommended to validate that the input coin balance is greater than zero before

merging it into the pending balance and emitting the corresponding event.

Resolution:
The team adopted our advice and fixed the issue by validate that the input coin balance,

which can be found at commit f457cc87c5e8566122072ef2e6d31b952176a6f5.

13/18



NPO-7 Missing update function on collectable_fee

Severity: Medium
Status: Fixed

Code Location:

liquid_staking_v2/sources/native_pool.move

Descriptions:
The collectable_fee variableis used in collect_fee_non_entry and, according to the code
logic, appears to be intended as the storage location for protocol fees. However, this
variable is only initialized to 0 and has no other mechanisms to update its value. As a result,
the collect_fee_non_entry function always withdraws the entire balance from

collected rewards as rewards.

sources/native_pool.move

fun collect_fee_non_entry(
self: &mut NativePool,
wrapper: &mut lotaSystemState,
ctx: &mut TxContext
): Coin<IOTA> {
let available = balance::value(&self.collectable_fee);
let mut fee_coin = coin::from_balance(balance::split(&mut self.collectable_fee,

available), ctx);

if (available < self.collected_rewards) {
let needed = self.collected_rewards - available;
let validators = validator_set::get_validators(&self.validator_set);
coin:;join(&mut fee_coin, unstake_amount_from_validators(self, wrapper, needed,
validators, ctx));

h

self.collected_rewards = self.collected_rewards - coin::value(&fee_coin);

14/18



fee_coin

Suggestion:

It is recommended to redesign the update logic for this ambiguously defined variable.

Resolution:

The team has adopted our advice and fixed the issue by removing the unused
collectable fee variable, which can be found at commit

f457cc87c5e8566122072ef2e6d31b952176a6f5.

15/18



VSE-5 Incorrect Upper Bound Check for Validator Updates

Severity: Minor
Status: Fixed

Code Location:

liquid_staking_v2/sources/validator_set.move#99

Descriptions:
The update_validators function enforces an upper bound on the number of validators
being updated:

sources/validator_set.move

let len = vector::length(&validators);

assert!(len < MAX_VLDRS_UPDATE, E_TOO_MANY_VLDRS);

This check rejects updates where len == MAX_VLDRS_UPDATE , even though the constant
name implies that updating up to MAX_VLDRS_UPDATE validators should be allowed. This

results in an off-by-one validation error that unnecessarily restricts valid inputs.

Suggestion:
It is recommended to allow the validator count to be less than or equal to the

MAX_VLDRS_UPDATE.

Resolution:

The team adopted our advice and fixed the issue by allow the validator count to be less than
or equal to the MAX_VLDRS_UPDATE, which can be found at commit
956ffb1c8a9677f2b5050ba10d627060fd787e5d.

16/18



Appendix 1

Issue Level

¢ Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

e Minor issues are general suggestions relevant to best practices and readability. They
don't post any direct risk. Developers are encouraged to fix them.

e Medium issues are non-exploitable problems and not security vulnerabilities. They
should be fixed unless there is a specific reason not to.

e Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

e Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Issue Status

e Fixed: The issue has been resolved.
e Partially Fixed: The issue has been partially resolved.

e Acknowledged: The issue has been acknowledged by the code owner, and the code
owner confirms it's as designed, and decides to keep it.

17/18



Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

Ve =T
N2 N
77 S\

. MOVEBIT /
N~

18/18



	1086_page1.pdf
	1086_page2.pdf

