
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Kana Smart Contract

Thu Feb 20 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Kana Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description An orderbook-based perpetual futures platform on Aptos

Type DeFi

Auditors MoveBit

Timeline Wed Jan 15 2025 - Mon Feb 10 2025

Languages Move

Platform Aptos

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/kanalabs/perpetual-core
https://github.com/0xAnto/move-integers

Commits https://github.com/kanalabs/perpetual-core:

db32c0b1655fcdda43e4afca2fa4a0d3837d9af8
2af3abf8b5d7a836757ceaaa29fb570fa9de27e2

https://github.com/0xAnto/move-integers:

85db3cc1fe520359c95fb22c85d899705c7907f9
ca7a1ebb997c71fa2789e2b1cca3e2e5489be2be

1/16

https://github.com/kanalabs/perpetual-core
https://github.com/0xAnto/move-integers
https://github.com/kanalabs/perpetual-core/tree/db32c0b1655fcdda43e4afca2fa4a0d3837d9af8
https://github.com/kanalabs/perpetual-core/tree/2af3abf8b5d7a836757ceaaa29fb570fa9de27e2
https://github.com/0xAnto/move-integers/tree/85db3cc1fe520359c95fb22c85d899705c7907f9
https://github.com/0xAnto/move-integers/tree/ca7a1ebb997c71fa2789e2b1cca3e2e5489be2be

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV Move.toml 68d61ac4e8b7eeaf6867212d6a61
8ecc4064760b

I8 sources/i8.move b8d56c94a5e966c73c06fd7fd6f69
3eea36d7c0f

I32 sources/i32.move 41f72b56f504424196678205be7c8
af6c5015e33

I12 sources/i128.move a5383808321ce85437c4f4595a9ce
5c5dd5ad9e3

I64 sources/i64.move 47e26286588fea76182b7e46071fd
e0c27b8f6a2

I25 sources/i256.move b382ad1b37565cc1f81dedd2b6fa2
5dd56b8c387

I16 sources/i16.move 1fbc5c08907320e8ed9513d5aac88
37888975326

MOV Move.toml ef4e51b7b67b861d47862afd69c2b
677693ff46f

RES sources/resource.move e28bf04bf0d085e3956dae9ff92f27
d05bb5bfdf

DSC sources/delegated_scripts.move be3c6bb6c2e2ec53b82943500084
384367b9552c

POR sources/price_oracle.move fe71c204fd778be618b6ef107bcf7e
c5920f1493

2/16

DPR sources/delegate_proxy.move aa050fdf9703bbe1fd3d21bf7bf2bc
67222e275b

PCO sources/perpetual_core.move 55ba95c2eedf9a335bd89907608f6
7f8d7d25ee1

UTI sources/utils.move 41f1eef89b01daddc3c2ac5439918
2606ce6f080

TRE sources/treasury.move 29df06cc3e3be8809c49acacd781a
1cca09aee70

PSC sources/perpetual_scripts.move a42b747c196c620264d55b71fe036
805b7022fa3

USP sources/utils.spec.move b98e18a1490fb5ed177635cc6c02f
cd2544cc007

3/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 5 0

Informational 1 1 0

Minor 1 1 0

Medium 0 0 0

Major 3 3 0

Critical 0 0 0

4/16

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

5/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/16

2 Summary

This report has been commissioned by Kanalabs to identify any potential issues and
vulnerabilities in the source code of the Kana smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

I32-1 Division Function Lacks Division-by-
Zero Check

Minor Fixed

PCO-1 Full-Matching Requirement in
Liquidation Logic May Lead to
Delayed Liquidation

Major Fixed

PCO-2 entry_price Calculation Error Major Fixed

PCO-3 Unrestricted Market Registration
May Cause Protocol Freeze

Major Fixed

PCO-4 Code Optimisation Informational Fixed

7/16

3 Participant Process

Here are the relevant actors with their respective abilities within the Kana Smart Contract :
Market Creater

register_market<UtilityType> : Register a new perpetual market.

contribute_to_insurance : Contribute to the insurance fund.

update_maintenance_margin : Update maintenance margin.

update_max_leverage : Update max leverage.

update_max_lots : Update max lots for a market.

withdraw_fees<UtilityType> : Withdraw fees from a market.

User

deposit_asset : Deposit collateral asset into trading account.

withdraw_asset : Withdraw collateral asset from trading account.

withdraw_asset_all_markets : Withdraw collateral asset from trading account after

checking positions in multiple markets.

enable_all_markets : Enable trading for all available markets for the caller.

execute_tpsl_market : Execute take profit or stop loss market order for a position.

liquidate_position : Liquidate a position that has fallen below maintenance margin

requirements.

place_market_order_external : Place a market order.

place_limit_order_external : Place a limit order.

place_multiple_orders_external : Place multiple orders.

cancel_and_place_multiple_orders_external : Cancel and place multiple orders.

cancel_multiple_orders_external : Cancel multiple orders.

update_position_external : Update position.

update_take_profit_external : Update take profit.

update_stop_loss_external : Update stop loss.

8/16

collapse_position_external : Collapse position.

add_delegation : Manage delegation.

remove_delegation : Remove delegation.

change_delegated_proxy : Change delegated proxy.

toggle_delegation : Toggle delegation.

extend_delegation : Extend delegation.

place_market_order_delegated : Place a market order.

place_limit_order_delegated : Place a limit order.

cancel_multiple_orders_delegated : Cancel multiple orders.

update_position_delegated : Update position.

update_take_profit_delegated : Update take profit.

update_stop_loss_delegated : Update stop loss.

collapse_position_delegated : Collapse position.

9/16

4 Findings

I32-1 Division Function Lacks Division-by-Zero Check

Severity: Minor

Status: Fixed

Code Location:

sources/i32.move#90;

sources/i128.move#102;

sources/i256.move#99;

sources/i16.move#90

Descriptions:

In the i16 , i32 , i128 , and i256 modules, the div function lacks a division-by-zero check.

When the divisor is zero, the function does not detect and handle the condition, which may

lead to runtime errors, incorrect computation results, or abnormal program termination,

thus posing potential security risks.

Suggestion:

It is recommended to integrate a check within the div function to verify whether the divisor

is zero. If zero is detected, the function should immediately throw an exception or return an

error, preventing erroneous computations.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/16

PCO-1 Full-Matching Requirement in Liquidation Logic May
Lead to Delayed Liquidation

Severity: Major

Status: Fixed

Code Location:

sources/perpetual_core.move

Descriptions:

In the protocol’s liquidation logic, market orders are required to match the entire liquidation

quantity of a position exactly. However, in scenarios of insufficient liquidity, this requirement

can lead to unsuccessful liquidations. If liquidation is delayed due to inadequate liquidity, the

position may eventually be liquidated at a price significantly lower than expected.

Consequently, the liquidation cost would be much lower, and the insurance fund would have

to compensate for the difference, exposing it to substantial loss risks.

 assertassert!!((
 filled_lots filled_lots ==== ((liquidation_lots liquidation_lots asas u128 u128)),,
 E_INSUFFICIENT_LIQUIDITY_IN_OB_TO_LIQUIDATEE_INSUFFICIENT_LIQUIDITY_IN_OB_TO_LIQUIDATE
));;

Suggestion:

It is recommended to allow liquidation orders to be partially filled when liquidity is low

instead of requiring full matching of the liquidation quantity in one go, or that other effective

measures be taken to prevent liquidation failures or delays due to illiquidity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/16

PCO-2 entry_price Calculation Error

Severity: Major

Status: Fixed

Code Location:

sources/perpetual_core.move#4133-4140,4039-3043

Descriptions:

short.filled_open_size += new_filled_size;short.filled_open_size += new_filled_size;
 short.entry_price = ((short.entry_priceshort.entry_price = ((short.entry_price
 * (short.filled_open_size as u128))* (short.filled_open_size as u128))
 + (((price as u128) * SCALING_FACTOR) * (new_filled_size as u128))) / (+ (((price as u128) * SCALING_FACTOR) * (new_filled_size as u128))) / (
 (short.filled_open_size as u128) + (new_filled_size as u128)(short.filled_open_size as u128) + (new_filled_size as u128)
););

In handle_short_cancel_order and handle_long_cancel_order functions,to calculate the

price here, you should first calculate the value of entry_price , and then add new_filled_size

to filled_open_size .

Suggestion:

It is recommanded that price is calculated first, then new_filled_size is added.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/16

PCO-3 Unrestricted Market Registration May Cause Protocol
Freeze

Severity: Major

Status: Fixed

Code Location:

sources/perpetual_core.move#1200,1480

Descriptions:

When calling the register_market function, the protocol automatically adds the newly

created market to the available_markets list. Later, when a user deposits collateral assets

into their trading account, the protocol iterates through all markets in available_markets

and creates an account for the user in each market.

However, since register_market is a public function without access control, any user can

call it multiple times, leading to an uncontrolled increase in the number of markets. As the

number of markets grows, the gas cost for deposit operations will significantly rise,

potentially causing the protocol to freeze (out of gas or computation limit exceeded) in

extreme cases.

 // Add market_id to PlatformConfig// Add market_id to PlatformConfig
 letlet platform platform == borrow_global_mut borrow_global_mut<<PlatformConfigPlatformConfig>>((resource_addressresource_address));;
 platformplatform..available_marketsavailable_markets..push_backpush_back((market_idmarket_id));;

// register market accounts// register market accounts
 letlet markets markets == available_marketsavailable_markets((resource_addressresource_address));;
 marketsmarkets..for_each_reffor_each_ref((||market_idmarket_id|| {{
 register_market_accountregister_market_account((callercaller,, **market_idmarket_id))
 }}));;

Suggestion:

It is recommended to confirm it aligns with your design.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/16

PCO-4 Code Optimisation

Severity: Informational

Status: Fixed

Code Location:

sources/perpetual_core.move#2206

Descriptions:

In the execute_short_market_open function, there is an assertion assert_fill(filled_lots,

(order_lots as u128)); . Currently, this assertion is executed later in the function, which may

result in significant gas consumption before the condition fails.

Suggestion:

It is recommended to move this assertion earlier in the function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	738_page1.pdf
	738_page2.pdf

